Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Both environmental temperatures and spatial heterogeneity can profoundly affect the biology of ectotherms. In lizards, thermoregulation may show high plasticity and may respond to environmental shifts. In the context of global climate change, lizards showing plastic thermoregulatory responses may be favored. In this study, we designed an experiment to evaluate the extent to which lizard thermoregulation responds to introduction to a new environment in a snapshot of time. In 2014, we captured individuals of the Aegean Wall lizard (Podarcis erhardii) from Naxos Island (429.8 km) and released them onto two small, lizard-free islets, Galiatsos (0.0073 km) and Kampana (0.004 km) (Aegean Sea, Greece). In 2017, we returned to the islets and estimated the effectiveness (E), accuracy and precision of thermoregulation measuring operative, preferred (T) and body temperatures. We hypothesized that the three habitats would differ in thermal quality and investigated the extent to which lizards from Naxos demonstrate plasticity when introduced to the novel, islet habitats. Thermal parameters did not differ between Galiatsos and Naxos and this was reflected in the similar E and T. However, lizards from Kampana deviated in all focal traits from Naxos, resulting in higher E and a preference for higher T. In sum, Naxos lizards shifted their thermoregulatory profile due to the idiosyncratic features of their new islet habitat. Our results advocate a high plasticity in lizard thermoregulation and suggest that there is room for effective responses to environmental changes, at least for Podarcis lizards in insular habitats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2019.07.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!