It is still an open question as to whether or not aseptic injuries affect the generation of fever due to exogenous pyrogens including bacterial products. Therefore, in the present paper we have investigated the course of endotoxin fever in rats induced with lipopolysaccharide (LPS; given intraperitoneally in a dose of 50 μg/kg) 48 h after subcutaneous administration of turpentine oil (TRP; 0.1 mL per rat) that causes aseptic necrosis of tissues. We found that febrile response was significantly augmented in the animals pre-treated with turpentine compared to control rats (pre-treated with saline), and that observed excessive elevation of body temperature (Tb) was accompanied by enhanced release of fever mediators: interleukin-6 (IL-6) and prostaglandin E (PGE) into plasma. Moreover, we found that sensitization to pyrogenic effects of lipopolysaccharide was associated with the increase in plasma level of high mobility group box 1 protein (HMGB1), one of the best-known damage-associated molecular patterns (DAMP), which was recently discovered as inflammatory mediator. Since the injection of anti-HMGB1 antibodies weakened observed hyperpyrexia in the animals pre-treated with turpentine, we conclude that HMGB1 is a plasma-derived factor released in the course of aseptic injury that enhances pyrogenic effects of LPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2019.05.028 | DOI Listing |
Environ Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Microbiology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
Pyrogens cause shock symptoms when released into the bloodstream. They are classified into two main categories: endotoxins (lipopolysaccharides [LPS]) and non-endotoxin pyrogens. The monocyte activation test (MAT) is an in vitro assay to detect pyrogens in human monocytes.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Pre-Clinical Research Centre, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland.
Percutaneous Coronary Intervention (PCI) is a treatment method that involves reopening narrowed arteries with a balloon catheter that delivers a cylindrical, mesh-shaped implant device to the site of the stenosis. Currently, by applying a coating to a bare metal stent (BMS) surface to improve biocompatibility, the main risks after PCI, such as restenosis and thrombosis, are reduced while maintaining the basic requirements for the mechanical behavior of the stent itself. In this work, for the first time, the development and optimization process of the spatial structure of the Co-Cr stent (L-605) with a graphene-based coating using cold-wall chemical vapor deposition (CW-CVD) to ensure uniform coverage of the implant was attempted.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!