A transient three dimensional (3D) theoretical axisymmetric model is developed for heat exchange across the human respiratory tract during inspiration phase and applied to study the changes in the airway temperature and velocity profile for varying ventilation rates and inhalation temperatures. A multi-compartment approach is used to study the same to avoid the airway scaling problem from micro to nano scale. This analysis also includes the role of water evaporation in mucus and non perfused tissue layers and the role of capillary bed in thermal variations during respiration. The results of heat transfer in airway and mucus layer depend on the local morphological parameters. The results are compared with the case of hypothetical regular geometry to show the significance of local morphology. The location where the inhaled air gets saturated with the body core temperature is computed to estimate the saturation distance of air. The complete analysis is made for two breathing cycles with different inhalation to exhalation ratios. The results indicate that decreasing the ventilation rate and increasing the respiration cycle can avoid the deep penetration of heat into the tract and consequently tissue thermal injury can be avoided. We have also explained numerically the role of mucus layer in avoiding tissue injury in intra-thoracic airways. We have also observed a significant difference in results for high ventilation rates between the cases of actual (cast replica) and regular airway geometry. The numerical results are in good adjustment with existing experimental data and thus validate our approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2019.07.026 | DOI Listing |
J Cardiothorac Surg
January 2025
Cardiac Surgery Critical Care Center Inpatient Ward 1, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Objective: To investigate the effectiveness of initial hemostatic resuscitation(IHR) on the treatment of bleeding with recombinant human coagulation factor VIIa after cardiac surgery.
Methods: The clinical data of patients who received rFVIIa hemostatic treatment after cardiac surgery at Beijing Anzhen Hospital, Capital Medical University, from January 1, 2021, to December 31, 2021 were retrospectively collected. A total of 152 cases were included in the study.
BMC Pulm Med
January 2025
Department of Geriatrics, Harrison International Peace Hospital, Intersection of Renmin Road, Hongqi Street, Taocheng District, Hengshui City, Hebei Province, 053000, China.
Objectives: To explore the factors related to the progression of chronic obstructive pulmonary disease (COPD).
Methods: 80 COPD patients treated between January 2020 and December 2022. The patients' pulmonary functions at their first hospital admission were categorized into four groups: Grade I, Grade II, Grade III and Grade IV.
J Surg Res
January 2025
Division of Trauma and Surgical Critical Care, Department of Surgery, Orlando Regional Medical Center, Orlando, Florida; Department of Surgical Education, Orlando Regional Medical Center, Orlando, Florida. Electronic address:
Introduction: This systematic review aims to evaluate the optimal management of acute respiratory distress syndrome (ARDS) in critically ill surgical patients, specifically focusing on positioning, extracorporeal membrane oxygenation (ECMO) use, ventilation, fluid resuscitation, and pharmacological treatments.
Methods: A systematic review was conducted utilizing four databases including PubMed, Google Scholar, EMBASE, and ProQuest. This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was registered with The International Prospective Register of Systematic Reviews.
MAGMA
January 2025
Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
Objective: To establish an arterial spin labeling (ASL) protocol for rat livers that improves data reliability and reproducibility for perfusion quantification.
Methods: This study used respiratory-gated, single-slice, FAIR-based ASL imaging with multiple inversion times (TI) in rat livers. Quality assurance measures included: (1) introduction of mechanical ventilation to ensure consistent respiratory cycles by controlling the respiratory rate (45 bpm), tidal volume (10 ml/kg), and inspiration: expiration ratio (I:E ratio, 1:2), (2) optimization of the trigger window for consistent trigger points, and (3) use of fit residual map and coefficient of variance as metrics to assess data quality.
Eur J Pediatr
January 2025
Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, Denmark Hill, London, UK.
Unlabelled: Infants requiring interhospital transfer for a higher level of care in the neonatal period are at increased risk of adverse outcomes. Optimising respiratory management is an important priority. The aim of this survey was to investigate current respiratory support strategies in neonatal transport and identify opportunities for the optimisation of clinical care and future research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!