The aim of this study was to examine the feasibility of noncoplanar volumetric modulated arc stereotactic radiotherapy (VMAT-SRT) using a 5-mm multileaf collimator (MLC) for multiple brain metastases. We identified 34 multiple-target cases (3 to 19 targets in each case) with a total of 257 of targets and constructed noncoplanar VMAT-SRT plans using 5-mm and 2.5-mm MLCs with 4-arc. The prescribed dose was 36 Gy/6 fr. Plans were evaluated using the Paddick conformity indices (PCI), Paddick gradient index (PGI), and normal brain dose (NBD, equal to the mean brain dose minus gross tumor volume). There were no significant differences in PCI (median [range]: 5 mm, 0.88 [0.78 to 0.94]; 2.5 mm, 0.89 [0.78 to 0.94]; p= 0.691), PGI (median [range]: 5 mm, 3.96 [2.21 to 6.63]; 2.5 mm, 3.96 [2.24 to 6.45]; p= 0.358), or NBD (median [range]: 5 mm, 7.5 Gy [2.5 to 12.4]; 2.5 mm, 7.5 Gy [2.5 to 12.5]; p= 0.675). The performance of the 5-mm MLC was not inferior to the 2.5-mm MLC in applications of noncoplanar VMAT-SRT for multiple brain metastases with regards to dose conformity, gradient, and NBD. This study provides the necessary background for generalizing noncoplanar VMAT-SRT approaches in treating multiple brain lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meddos.2019.07.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!