0.2 V Electrolysis Voltage-Driven Alkaline Hydrogen Production with Nitrogen-Doped Carbon Nanobowl-Supported Ultrafine Rh Nanoparticles of 1.4 nm.

ACS Appl Mater Interfaces

Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University, Xi'an 710062 , P. R. China.

Published: September 2019

The development of highly effective and low-cost electrocatalysts for energy-saving hydrogen production via water splitting is still a great challenge. Herein, porous nitrogen-doped carbon nanobowls (N-CBs) have been designed and used for the controlled growth of ultrafine rhodium (Rh) nanoparticles. With the aid of interfacial bonding of Rh and N, ultrafine Rh nanoparticles with an average size of 1.4 nm have been successfully immobilized on the N-CBs. This Rh/N-CB electrocatalyst shows superior activity and high stability for the hydrogen evolution reaction (HER) and the hydrazine oxidation reaction (HzOR). More importantly, the Rh/N-CBs exhibit high activity for hydrogen production from water electrolysis, marking with a cell voltage of 0.2 V to achieve a current density of 20 mA cm when they serve as cathodic electrocatalysts for the HER and anodic electrocatalysts for the HzOR in 1 M KOH with 0.5 M hydrazine. The density functional theory calculations demonstrate that a near-zero hydrogen adsorption free energy produced by the chemical bonding of Rh with the pyrrole-N doped in N-CBs is responsible for the excellent HER activity of Rh/N-CBs electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b13586DOI Listing

Publication Analysis

Top Keywords

hydrogen production
12
nitrogen-doped carbon
8
ultrafine nanoparticles
8
production water
8
hydrogen
5
electrolysis voltage-driven
4
voltage-driven alkaline
4
alkaline hydrogen
4
production nitrogen-doped
4
carbon nanobowl-supported
4

Similar Publications

This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.

View Article and Find Full Text PDF

Natural products are ligands and in vitro inhibitors of Alzheimer's disease (AD) tau. Dihydromyricetin (DHM) bears chemical similarity to known natural product tau inhibitors. Despite having signature polyphenolic character, DHM is ostensibly hydrophobic owing to intermolecular hydrogen bonds that shield hydrophilic phenols.

View Article and Find Full Text PDF

Introduction: This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets.

Methods: The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described.

View Article and Find Full Text PDF

Study on protein hydrolysis and microbial community changes during the fermentation of pork loin ham mediated by electrical stimulation.

Food Res Int

February 2025

School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China. Electronic address:

This study explored the effect of electrical stimulation (ES) and Pediococcus pentosaceus LL-07 (P. pentosaceus LL-07) and Staphylococcus simulans QB7 (S. simulans QB7) on the quality and microbial community of loin ham during the ripening.

View Article and Find Full Text PDF

Antibacterial activity of zinc oxide nanoparticles against Shewanella putrefaciens and its application in preservation of large yellow croaker (Pseudosciaena crocea).

Food Res Int

February 2025

Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China. Electronic address:

Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!