Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The formation of ternary aqua complexes of metal-based diagnostics and therapeutics is closely correlated to their in vivo efficacy but approaches to quantify the presence of coordinated water ligands are limited. We introduce a general and high-throughput method for characterizing the hydration state of para- and diamagnetic coordination complexes in the gas phase based on variable-temperature ion trap tandem mass spectrometry. Ternary aqua complexes are directly observed in the mass spectrum and quantified as a function of ion trap temperature. We recover expected periodic trends for hydration across the lanthanides and distinguish complexes with several inner-sphere water ligands by inspection of temperature-dependent speciation curves. We derive gas-phase thermodynamic parameters for discernible inner- and second-sphere hydration events, and discuss their application to predict solution-phase behavior. The differences in temperature at which water binds in the inner and outer spheres arise primarily from entropic effects. The broad applicability of this method allows us to estimate the hydration states of Ga, Sc, and Zr complexes under active preclinical and clinical study with as-yet undetermined hydration number. Variable-temperature mass spectrometry emerges as a general tool to characterize and quantitate trends in inner-sphere hydration across the periodic table.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b05874 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!