The vibrational spectrum of ice II was investigated using the CASTEP code based on first-principles density functional theory (DFT). Based on good agreement with inelastic neutron scattering (INS), infrared (IR), and Raman experimental data, we discuss the translation, libration, bending, and stretching band using normal modes analysis method. In the translation band, we found that the four-bond and two-bond molecular vibration modes constitute three main peaks in accordance with INS ranging from 117 to 318 cm. We also discovered that the lower frequencies are cluster vibrations that may overlap with acoustic phonons. Whale et al. found in ice XV that some intramolecular vibrational modes include many isolated-molecule stretches of only one O-H bond, whereas the other O-H bond does not vibrate. This phenomenon is very common in ice II, and we attribute it to local tetrahedral deformation. The pathway of combining normal mode analysis with experimental spectra leads to scientific assignments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749557 | PMC |
http://dx.doi.org/10.3390/molecules24173135 | DOI Listing |
J Mol Graph Model
January 2025
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 Academician Semenov Avenue, 142432, Chernogolovka, Russian Federation.
Gas phase bond dissociation energies (BDE) O-H/N-H in hydroquinone (HQ), 4-aminophenol (AP), 1,4-phenylenediamine (PDA), 4-hydroxydiphenylamine (HDPA), N,N'-diphenyl-1,4-phenylenediamine (DPPDA) as well as in their phenoxyl/aminyl radicals have been determined using a combined technique of quantum chemical calculation. The technique included a series of DFT (PBE1PBE, TPSSTPSS, M06-2X), ab initio (DLPNO-CCSD(T)) methods with valence 3ξ-basis sets, composite methods of Gaussian family (G4) and Weizmann theory with ab initio Brueckner Doubles (W1BD), as well as reference reactions of different levels of structural similarity. W1BD method was used in combination with isodesmic reactions for BDE estimation (kJ∙mol) of compounds with the only aromatic fragment: BDE = 352.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
J Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFMagn Reson Chem
January 2025
Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.
We present a DFT-PCM NMR study of 3-indoleacetic acid (3-IAA), used as a working example, including explicit solvent molecules, named PCM-nCHCl, PCM-nDMSO (n = 0, 2, 4, 8, 14, 20, and 25), to investigate the dimer formation in solution. Apart from well-known cyclic (I) and open (II) acetic acid (AA) dimers, two new structures were located on DFT-PCM potential energy surface (PES) for 3-IAA named quasicyclic A (III) and quasicyclic B (IV), the last one having N-H…O hydrogen bond (instead of O-H…O). In addition, four other structures having π-π type interactions named V, VI, VII, and VIII were also obtained completing the sample on the PES.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Herein, we investigate the effects of ligand design on the nuclearity and reactivity of metal-ligand multiply bonded (MLMB) complexes to access an exclusively bimetallic reaction pathway for C-H bond functionalization. To this end, the diiron alkoxide [Fe(Dbf)] () was treated with 3,5-bis(trifluoromethyl)phenyl azide to access the diiron imido complex [Fe(Dbf)(μ-NCHF)] () that promotes hydrogen atom abstraction (HAA) from a variety of C-H and O-H bond containing substrates. A diiron bis(amide) complex [Fe(Dbf)(μ-NHCHF)(NHCHF)] () was generated, prompting the isolation of the analogous bridging amide terminal alkoxide [Fe(Dbf)(μ-NHCHF)(OCH)] () and the asymmetric pyridine-bound diiron imido [Fe(Dbf)(μ-NCHF)(NCH)] ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!