Principal component analysis (PCA) is a widely used method for evaluating low-dimensional data. Some variants of PCA have been proposed to improve the interpretation of the principal components (PCs). One of the most common methods is sparse PCA which aims at finding a sparse basis to improve the interpretability over the dense basis of PCA. However, the performances of these improved methods are still far from satisfactory because the data still contain redundant PCs. In this paper, a novel method called PCA based on graph Laplacian and double sparse constraints (GDSPCA) is proposed to improve the interpretation of the PCs and consider the internal geometry of the data. In detail, GDSPCA utilizes L2,1-norm and L1-norm regularization terms simultaneously to enforce the matrix to be sparse by filtering redundant and irrelative PCs, where the L2,1-norm regularization term can produce row sparsity, while the L1-norm regularization term can enforce element sparsity. This way, we can make a better interpretation of the new PCs in low-dimensional subspace. Meanwhile, the method of GDSPCA integrates graph Laplacian into PCA to explore the geometric structure hidden in the data. A simple and effective optimization solution is provided. Extensive experiments on multi-view biological data demonstrate the feasibility and effectiveness of the proposed approach.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000501653DOI Listing

Publication Analysis

Top Keywords

graph laplacian
12
principal component
8
component analysis
8
based graph
8
laplacian double
8
double sparse
8
sparse constraints
8
proposed improve
8
improve interpretation
8
interpretation pcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!