Developing novel antimicrobial agents is a top priority in fighting against bacterial resistance. Thus, a series of new monomer and dimer peptides were designed and synthesized by conjugating fatty acids at the N-terminus of partial d-amino acid substitution analogues of anoplin and dimerization. The new peptides exhibited more efficient killing of gram-negative and gram-positive bacteria, including methicillin-resistant Staphylococcus aureus compared with the parent peptide anoplin, and the dimer peptides were superior to the monomer peptides. It was important that the new peptides displayed low impact on bacterial resistance development. In addition, the antimicrobial activities were not significantly influenced by a physiological salt environment. They also presented high stability in the presence of protease or serum. Almost all of the new peptides had better selectivity towards anionic bacterial membranes over zwitterionic mammalian cell membranes. Moreover, the new peptides displayed synergistic or additive effects when used together with the antibiotics rifampicin and polymyxin B. These results showed that the new peptides could also prevent the formation of bacterial biofilms. Furthermore, outer/inner membrane permeabilization and cytoplasmic membrane depolarization experiments revealed that the new peptides had strong membrane permeabilization and depolarization. Confocal laser scanning microscopy, flow cytometry analysis and scanning electron microscopy further demonstrated that the new peptides could damage the integrity of the bacterial membrane. Finally, a DNA-binding affinity assay showed that the new peptides could bind to bacterial DNA. In summary, the conjugation of fatty acids at the N-terminus of peptides and dimerization are promising strategies for obtaining potent antimicrobial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2019.111636 | DOI Listing |
ACS Nano
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.
View Article and Find Full Text PDFDelayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Background: The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is known for its capacity to cause severe neurological disease in Asia. Neurotropic flaviviruses within the Japanese encephalitis (JE) serogroup possess the distinctive feature of expressing a unique nonstructural protein, NS1'. The NS1' protein consists of the full NS1 protein with an additional 52 amino acid extension at the C-terminus and has been demonstrated to exhibit virulence in mammalian hosts upon infection.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!