Background: Next to aluminum salts, squalene nanoemulsions comprise the most widely employed class of adjuvants in approved vaccines. Despite their importance, the mechanisms of action of squalene nanoemulsions are not completely understood, nor are the structure/function requirements of the oil composition.

Purpose: In this study, we build on previous work that compared the adjuvant properties of nanoemulsions made with different classes of oil structures to squalene nanoemulsion. Here, we introduce nanoemulsions made with polyprenols derived from species of the Pinaceae family as novel vaccine adjuvant compositions. In contrast with long-chain triglycerides that do not efficiently enhance an immune response, both polyprenols and squalene are comprised of multimeric isoprene units, which may represent an important structural property of oils in nanoemulsions with adjuvant properties.

Study Design: Oils derived from species of the Pinaceae family were formulated in nanoemulsions, with or without a synthetic Toll-like receptor 4 (TLR4) ligand, and characterized regarding physicochemical and biological activity properties in comparison to squalene nanoemulsions.

Methods: Oils were extracted from species of the Pinaceae family and used to prepare oil-in-water nanoemulsions by microfluidization. Emulsion droplet diameter stability was characterized by dynamic light scattering. Nanoemulsions were evaluated for in vitro biological activity using human whole blood, and in vivo biological activity in mouse, pig, and ferret models when combined with pandemic influenza vaccine antigens.

Results: Nanoemulsions comprised of Pinaceae-derived polyprenol oils demonstrated long-term physical stability, stimulated cytokine production from human cells in vitro, and promoted antigen-specific immune responses in various animal models, particularly when formulated with the TLR4 ligand glucopyranosyl lipid adjuvant (GLA).

Conclusion: Pinaceae-derived nanoemulsions are compatible with inclusion of a synthetic TLR4 ligand and promote antigen-specific immune responses to pandemic influenza antigens in mouse, pig, and ferret models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790179PMC
http://dx.doi.org/10.1016/j.phymed.2019.152927DOI Listing

Publication Analysis

Top Keywords

species pinaceae
16
pinaceae family
16
tlr4 ligand
12
biological activity
12
nanoemulsions
10
vaccine adjuvant
8
squalene nanoemulsions
8
derived species
8
mouse pig
8
pig ferret
8

Similar Publications

Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.

View Article and Find Full Text PDF

is a vector responsible for the transmission of various arboviruses and is considered by the World Health Organization to be one of the main public health problems in the world. This study evaluated the larvicidal and oviposition activity of essential oils from , and and their formulations. Chromatographic analysis by GCMS identified a total of 28, 52 and 18 compounds for the oils of the species , and , respectively.

View Article and Find Full Text PDF

Identification and Transcriptome Analysis of with Excellent Low Temperature Resistance.

Int J Mol Sci

December 2024

Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China.

is one of the most destructive quarantine pests, causing irreversible damage to pine trees. However, the unexpected identification of pine wilt disease in Northern China indicates that can survive under low temperatures. In this study, we analyzed the reproductivity variations among 18 different isolates, and SC13 was identified to have excellent low temperature resistance.

View Article and Find Full Text PDF

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!