Numerical solution of inward solidification of a dilute ternary solution towards a semi-permeable spherical cell.

Math Biosci

Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8910, United States. Electronic address:

Published: October 2019

Modeling a cell's response to encroaching ice has informed the development of cryopreservation protocols for four decades. It has been well documented that knowledge of the cellular state as a function of media and cooling rate faciliate informed cryopreservation protocol design and explain mechanisms of damage. However, previous efforts have neglected the interaction between solutes and the encroaching ice front and their effects on the cell state. To address this, here we examine the cryobiologically relevant setting of a spherically-symmetric model of a biological cell separated by a ternary fluid mixture from an encroaching solid-liquid interface. The cell and liquid regions contain cell membrane impermeable intracellular and extracellular salts, respectively, a cell membrane permeable solute commonly used in cryopreservation protocols known as a cryoprotective agent (CPA), and water as a membrane permeable solvent. As cooling and solidification proceed the extracellular chemical environment evolves and leads to mass transport across the cell membrane. Consequently, both the solidification front and the cell membrane are free boundaries whose dynamics are coupled through transport processes in the solid, liquid and cell regions. We describe a numerical procedure to solve this coupled free-boundary problem based on a domain transformation and method of lines approach. We also investigate how the thermal and chemical states inside the cell are influenced by different cooling protocols at the external boundary. Finally, we observe that the previously unaccounted-for partial solute rejection at the advancing solid-liquid interface increases the CPA and salt concentrations in the extracellular liquid as a function of the interface speed and segregation coefficients, suggesting that previous model predictions of the cell state during cryopreservation were inaccurate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2019.108240DOI Listing

Publication Analysis

Top Keywords

cell membrane
16
cell
11
encroaching ice
8
cryopreservation protocols
8
cell state
8
solid-liquid interface
8
membrane permeable
8
membrane
5
numerical solution
4
solution solidification
4

Similar Publications

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!