A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-step genomic prediction of fruit-quality traits using phenotypic records of non-genotyped relatives in citrus. | LitMetric

The potential of genomic selection (GS) is currently being evaluated for fruit breeding. GS models are usually constructed based on information from both the genotype and phenotype of population. However, information from phenotyped but non-genotyped relatives can also be used to construct GS models, and this additional information can improve their accuracy. In the present study, we evaluated the utility of single-step genomic best linear unbiased prediction (ssGBLUP) in citrus breeding, which is a genomic prediction method that combines the kinship information from genotyped and non-genotyped relatives into a single relationship matrix for a mixed model to apply GS. Fruit weight, sugar content, and acid content of 1,935 citrus individuals, of which 483 had genotype data of 2,354 genome-wide single nucleotide polymorphisms, were evaluated from 2009-2012. The prediction accuracy of ssGBLUP for genotyped individuals was similar to or higher than that of usual genomic best linear unbiased prediction method using only genotyped individuals, especially for sugar content. Therefore, ssGBLUP could yield higher accuracy in genotyped individuals by adding information from non-genotyped relatives. The prediction accuracy of ssGBLUP for non-genotyped individuals was also slightly higher than that of conventional best linear unbiased prediction method using pedigree information. This indicates that ssGBLUP can enhance prediction accuracy of breeding values for non-genotyped individuals using genomic information of genotyped relatives. These results demonstrate the potential of ssGBLUP for fruit breeding, including citrus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715226PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221880PLOS

Publication Analysis

Top Keywords

non-genotyped relatives
16
best linear
12
linear unbiased
12
unbiased prediction
12
prediction method
12
prediction accuracy
12
genotyped individuals
12
single-step genomic
8
prediction
8
genomic prediction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!