There are two physiological plasminogen activators (PAs), tissue-type PA (t-PA) and urokinase (u-PA) which possess distinct immunological and biochemical characteristics. Using genetic engineering techniques a hybrid t:u-PA cDNA, comprised of amino acid (aa) sequences corresponding to the non-protease region (aa 1-261) of t-PA and the protease region (aa 132-411) of u-PA, was constructed. The t:u-PA gene after insertion into the SV40 expression vector was expressed in monkey Cos-1 cells. The 66-67 kDa t:u-PA was produced in an enzymatically active form. The fibrinolytic activity of the t:u-PA could be quenched by anti-urokinase as well as by anti-t-PA sera. Like urokinase, the t:u-PA showed a high intrinsic plasminogen activation. This activity, as in the case of t-PA, was stimulated by fibrin. The u-PA, on the other hand, stimulated plasminogen activation marginally in the presence of fibrin. Both the t:u-PA and t-PA showed binding affinity for fibrin clot. This study strongly suggests the autonomous nature of the structural domains in PA and also demonstrates the feasibility of shuffling these domains without loss of their functional activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-1119(88)90022-4 | DOI Listing |
Int J Mol Sci
January 2025
Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia.
The role of the plasminogen activation system is to regulate the activity of the extracellular protease plasmin. It comprises the urokinase plasminogen activator (uPA), a specific extracellular protease which activates plasminogen, its inhibitor PAI1, and the urokinase plasminogen activator receptor, uPAR, which localizes the urokinase activity. The plasminogen activation system is involved in tissue remodeling through extracellular matrix degradation, and therefore participates in numerous physiological and pathological processes, which make it a potential biomarker.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel.
Circadian misalignment, due to shiftwork and/or individual chronotype and/or social jetlag (SJL), quantified as the difference between internal and social timing, may contribute to cardiovascular disease. Markers of endothelial dysfunction and activation of the coagulation system may predict cardiovascular pathology. The present study aim was to investigate the effects of shift work, SJL, and chronotype on endothelial function and coagulation parameters.
View Article and Find Full Text PDFBiomolecules
December 2024
Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic.
We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity.
View Article and Find Full Text PDFVet Res
January 2025
Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain.
Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt.
Background: Chronic inflammation and its control are crucial to the responses of glomerular and renal tubular cells. This contributes to the pathogenic mechanisms and advancement of the disease in Alport syndrome. The study aimed to elucidate the role of cyclooxygenase-2, Interleukin 4, Plasminogen activating inhibitor 1, and Prostaglandin E2 in the development and course of Alport syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!