Background: With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient's body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs.
Methods: Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery.
Results: Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications.
Conclusion: In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612825666190425190754 | DOI Listing |
Biotechnol J
January 2025
Department of Marine Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh.
Due to their superior physicochemical features, chitosan thermosensitive hydrogels are multipurpose platforms that are frequently used in the biomedical industry. Many investigations have been conducted recently to modify their pore dimensions, expansion, biodegradability, stimulus-reaction characteristics, and other characteristics in order to better tailor them to the complex craniofacial tissues. They have been the focus of various studies that have attempted to load biological cargos for therapeutic and regenerative uses in the oro-facial tissues.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing Tech University, College of Chemical Engineering, Nanjing, CHINA.
The wide application of zeolite Y in petrochemical industry is well known as one of the milestones in zeolite chemistry and heterogeneous catalysis. However, the traditional organic-free synthesis typically produces (hydro)thermally unstable zeolite Y with Si/Al atomic ratio (SAR) less than 2.5.
View Article and Find Full Text PDFBiomark Res
January 2025
BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.
View Article and Find Full Text PDFResuscitation
January 2025
Department of Medicine, University of Washington, Seattle, WA; King County Emergency Medical Services, Seattle-King County Department of Public Health, Seattle, WA.
Background: Prior studies have proposed defibrillator biosignal algorithms which characterize cardiac arrest rhythm and physiologic status. We evaluated whether a novel, individualized resuscitation strategy that integrates multiple ECG and impedance-based algorithms could reduce CPR interruptions and better align rescuer actions with patient-specific physiology.
Methods: In a retrospective cohort of ventricular fibrillation out-of-hospital cardiac arrests, observed rescuer actions (rhythm analysis, shock delivery, pulse checks, and drug therapy) were compared to hypothetical actions recommended by the proposed individualized strategy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!