A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning To Predict Standard Enthalpy of Formation of Hydrocarbons. | LitMetric

Thermodynamic properites of molecules are used widely in the study of reactive processes. Such properties are typically measured via experiments or calculated by a variety of computational chemistry methods. In this work, machine learning (ML) models for estimation of standard enthalpy of formation at 298.15 K are developed for three classes of acyclic and closed-shell hydrocarbons, viz. alkanes, alkenes, and alkynes. Initially, an extensive literature survey is performed to collect standard enthalpy data for training ML models. A commercial software (Dragon) is used to obtain a wide set of molecular descriptors by providing SMILES strings. The molecular descriptors are used as input features for the ML models. Support vector regression (SVR) and artificial neural networks are used with a two-level K-fold cross-validation (K-fold CV) workflow. The first level is for estimation of accuracy of both the ML models, and the second level is for generation of the final models. The SVR model is selected as the best model based on error estimates over 10-fold CV. The final SVR model is compared against conventional Benson's group additivity for a set of octene isomers from the database, illustrating the advantages of the proposed ML modeling approach.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b04771DOI Listing

Publication Analysis

Top Keywords

standard enthalpy
12
machine learning
8
enthalpy formation
8
molecular descriptors
8
svr model
8
models
5
learning predict
4
predict standard
4
formation hydrocarbons
4
hydrocarbons thermodynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!