Novel air stable ruthenium(ii) complexes bearing tridentate ligands bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (L1), 1-(1-benzyl-1H-1,2,3-triazol-4-yl)-N-(pyridin-2-ylmethyl)methanamine (L2) or 2-(4-phenyl-1H-1,2,3-triazol-1-yl)-N-(pyridin-2-ylmethyl)ethan-1-amine (L3) were synthesised. The nitrogen based ligands were easily prepared by virtue of click chemistry using cheap and commercially available reagents. The ruthenium complexes were obtained by heating the Ru(PPh3)3Cl2 precursor and the tridentate NNN ligand in toluene under reflux for 2 hours, achieving yields of 82-87%. These complexes were fully characterized by means of NMR, FT-IR and high resolution ESI spectroscopy. The crystal structure of one of the complexes was determined. These complexes showed excellent activity and selectivity in the hydrogenation of ketones and aldehydes. DFT calculations show that complex 3 may react through an outer-sphere catalytic cycle rather than via an inner-sphere mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt01822k | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62025-1652 USA.
The electrochemistry and spectroelectrochemistry of Ru(porphyrin)(NO)(phenoxide) complexes Ru(por)(NO)(OPh) (por = OEP, 1a; TAP, 2a; Ph = CH), Ru(por)(NO)(OAr) (por = OEP, 1b; TAP, 2b; OAr = -OCH-(2-NHC(O)CF)), Ru(por)(NO)(OAr) (por = OEP, 1c; TAP, 2c; OAr = OCH-(2,6-NHC(O)CF); OEP = octaethylporphyrinato dianion, TAP = tetraanisolylporphyrinato dianion) indicate that initial one-electron oxidation results in structure-dependent net reactivity at the phenoxide ligand. Oxidation of 1a generates 1a+, which undergoes a relatively slow rate-limiting second-order follow-up reaction. In contrast, 2a undergoes a diffusion-limited follow-up reaction after oxidation.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China.
Objective: Amid the escalating global cancer incidence, the development of effective and safe anticancer drugs is a critical priority in medical research. Addressing the clinical shortcomings of ruthenium-based anticancer drugs are currently a prominent focus of research.
Significance And Methods: Since the pioneering work with platinum derivatives, significant progress has been made in the fundamental studies of metal complexes for the treatment of a wide range of cancers, and there has been a growing interest in their properties and biomedical applications.
Appl Biochem Biotechnol
January 2025
Department of Chemistry, College of Sciences for Women, University of Baghdad, Baghdad, Iraq.
Azo dye was used to prepare a new series of complexes with chlorides of rhodium (Rh), ruthenium (Ru), and corona (Au). The prepared materials were subjected to infrared, ultraviolet-visible, and mass spectrometry, as well as thermogravimetric analysis, differential calorimetry, and elemental analysis. Conductivity, magnetic susceptibility, metal content, and chlorine content of the complexes were also measured.
View Article and Find Full Text PDFDalton Trans
January 2025
National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
The development of viable, stable, and highly efficient molecular water oxidation catalysts under acidic aqueous conditions (pH < 7) is challenging with Earth-abundant metals in the field of renewable energy due to their low stability and catalytic activity. The utilization of these catalysts is generally considered more cost-effective and sustainable relative to conventional catalysts relying on precious metals such as ruthenium and iridium, which exhibit outstanding activities. Herein, we discussed the effectiveness of transition metal complexes for electrocatalytic water oxidation under acidic conditions.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute for Organic Synthesis and Photoreactivity (ISOF) - National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
A supramolecular system, consisting of a tetrapyrenylporphyrinic core surrounded by arene-ruthenium prisms, has been assembled and characterized by means of electrochemical and photophysical techniques. The photophysical study shows that quantitative energy transfer from the peripheral pyrenyl units towards the central porphyrin core is operative in the tetrapyrenylporphyrinic system. Interestingly, encapsulation of the pyrenyl units into the ruthenium cages affects the photophysics of the central porphyrin component, since its emission quantum yield is reduced in the supramolecular array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!