Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to investigate the bactericidal effects of high intensity focused ultrasound (HIFU) on Bacillus Calmette-Guerin (BCG, a substitute for ) and and to explore the underlying mechanisms. HIFU, at a fixed frequency of 1 MHz, was applied to both BCG culture suspensions and subcutaneous BCG abscesses in rats. HIFU irradiation significantly reduced the bacterial survival rate and caused temperature elevations both and . Furthermore, BCG suspensions irradiated for 15 s at 3185 and 6369 W/cm had increased cell wall damage, which resulted in morphological changes compared to the untreated control group. Additionally, we observed histological changes in the rat subcutaneous abscesses after HIFU ablation at 6369 W/cm. H&E staining of infected lesions showed coagulative necrosis with central nucleus dissolution and increased infiltration of inflammatory cells, as well as nuclear pyknosis and nuclear fragmentation in the periphery. The volumes of the subcutaneous abscesses in the HIFU-treated group were significantly lower than those in the sham-treated group. HIFU has the therapeutic potential to treat BCG-infected tissues in rats. We theorize that a combination of mechanical, cavitation, and thermal effects most efficiently inactivate BCG bacteria via HIFU. This study is expected to provide a bio-plausible basis for a noninvasive and effective treatment for tuberculosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02656736.2019.1649474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!