Identification of human skin bacteria attractive to the Asian Tiger mosquito.

Environ Microbiol

Université de Lyon, Ecologie Microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France.

Published: December 2019

Aedes albopictus is a vector of arboviruses and filarial nematodes. Originating from Asia, this mosquito has rapidly expanded its geographical distribution and colonized areas across both temperate and tropical regions. Due to the increase in insecticide resistance, the use of environmentally friendly vector control methods is encouraged worldwide. Using methods based on semiochemicals in baited traps are promising for management of mosquito populations. Interestingly, human skin microbiota was shown to generate volatile compounds that attract the mosquito species Anopheles gambiae and Aedes aegypti. Here, we investigated the composition of skin bacteria from different volunteers and the attractive potential of individual isolates to nulliparous Ae. albopictus females. We showed that three out of 16 tested isolates were more attractive and two were more repulsive. We identified dodecenol as being preferentially produced by attractive isolates and 2-methyl-1-butanol (and to a lesser extent 3-methyl-1-butanol) as being overproduced by these isolates compared with the other ones. Those bacterial volatile organic compounds represent promising candidates but further studies are needed to evaluate their potential application for baited traps improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.14793DOI Listing

Publication Analysis

Top Keywords

human skin
8
skin bacteria
8
baited traps
8
identification human
4
attractive
4
bacteria attractive
4
attractive asian
4
asian tiger
4
mosquito
4
tiger mosquito
4

Similar Publications

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Sweet syndrome (SS), which is characterised by fever and erythematous tender skin lesions, has been shown to be associated with lymphoma. However, there are limited reported experiences on the wound care of SS in patients with lymphoma. This case report presents the wound care of SS in a patient with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALK+ALCL).

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the performance of an innovative multicomponent compression system in a single bandage (UrgoK1, Laboratoires Urgo, France) in the treatment of patients with venous leg ulcers (VLUs) and/or lower limb oedema in everyday practice.

Method: A prospective, observational, clinical study with the evaluated compression system was conducted in 39 centres in Germany between March 2022 and July 2023. Main outcomes included a description of the treated patients, changes in wound healing and oedema progression, local tolerance and acceptability of the compression system.

View Article and Find Full Text PDF

Exudate management is essential for creating a moist wound environment that promotes optimal healing, especially in highly exuding wounds, where choosing an appropriate wound dressing to handle high volumes of exudate is a key part of the wound management strategy. Superabsorbent wound dressings (SWDs) have been designed to absorb and retain large amounts of exudate. Thus, they are advocated for management of wounds with moderate-to-high levels of exudate to reduce the risk of leakage and damage to the periwound skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!