Identifying the traits that foster group survival in contrasting environments is important for understanding local adaptation in social systems. Here, we evaluate the relationship between the aggressiveness of social spider colonies and their persistence along an elevation gradient using the Amazonian spider, Anelosimus eximius. We found that colonies of A. eximius exhibit repeatable differences in their collective aggressiveness (latency to attack prey stimuli) and that colony aggressiveness is linked with persistence in a site-specific manner. Less aggressive colonies are better able to persist at high-elevation sites, which lack colony-sustaining large-bodied prey, whereas colony aggression was not related to chance of persistence at low-elevation sites. This suggests that low aggressiveness promotes colony survival in high-elevation, prey-poor habitats, perhaps via increased tolerance to resource limitation. These data reveal that the collective phenotypes that relate to colony persistence vary by site, and thus, the path of social evolution in these environments is likely to be affected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jeb.13532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!