High-Resolution Magic Angle Spinning (HRMAS) NMR Methods in Metabolomics.

Methods Mol Biol

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Published: April 2020

High-resolution magic angle spinning (HRMAS) NMR spectroscopy enables the evaluation of metabolite profiles of intact tissue with high spectral resolution. The ability to preserve the tissue after analysis permits subsequent histopathological examination and enables the analyses of correlations between tissue metabolites and pathologies, thus making HRMAS NMR spectroscopy a powerful tool in the metabolomics field. Improved methods for the elimination of spinning sidebands that appear at low spinning rates preserve the integrity of tissue structures better and allow measurement of delicate tissues, such as clinical biopsy core samples. In the metabolomics field, HRMAS NMR has been established as a valuable tool for both untargeted and targeted metabolite profiling. In this chapter, we present protocols to perform HRMAS NMR spectroscopy experiments, including sample preparation, acquisition procedures, measurement parameters, histopathological examination techniques, spectral processing, and metabolite quantification and statistical analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9690-2_4DOI Listing

Publication Analysis

Top Keywords

hrmas nmr
20
nmr spectroscopy
12
high-resolution magic
8
magic angle
8
angle spinning
8
spinning hrmas
8
histopathological examination
8
metabolomics field
8
hrmas
5
nmr
5

Similar Publications

Small molecules are essential for investigating the pharmacology of membrane proteins and remain the most common approach for therapeutically targeting them. However, most experimental small molecule screening methods require ligands containing radiolabels or fluorescent labels and often involve isolating proteins from their cellular environment. Additionally, most conventional screening methods are suited for identifying compounds with moderate to higher affinities ( < 1 μM) and are less effective at detecting lower affinity compounds, such as weakly binding molecular fragments.

View Article and Find Full Text PDF

High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.

View Article and Find Full Text PDF

Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate.

Gels

December 2024

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.

In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoE). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoE mice using solution and high-resolution-magic angle spinning (HR-MAS) H-NMR spectroscopy.

View Article and Find Full Text PDF

Hyaluronic acid-based hydrogels as codelivery systems: The effect of intermolecular interactions investigated by HR-MAS and solid-state NMR Spectroscopy.

Carbohydr Polym

February 2025

Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, MI, Italy. Electronic address:

Article Synopsis
  • - Hydrogels made from hyaluronic acid and agarose-carbomer are being studied for their potential to simultaneously deliver multiple drugs for different diseases, thanks to their biocompatibility and unique 3D structure.
  • - The study focuses on how ethosuximide and sodium salicylate interact and diffuse within these hydrogels, using advanced techniques like NMR Spectroscopy to analyze their transport properties.
  • - Findings suggest that when both drugs are loaded together, they behave similarly in their diffusion patterns, which may be influenced by drug-drug interactions, leading to a proposed trapping-release mechanism that affects how the drugs are released from the hydrogels.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!