AI Article Synopsis

  • The Ventral Tegmental Area (VTA) is crucial for processes like pain and addiction, and this study investigates how tramadol affects dopamine (DA) neurons in this region.
  • Researchers used Wistar rats to analyze the activity of VTA-DA neurons after administering tramadol, finding significant changes in firing rates that suggest tolerance and dependence.
  • The results showed that tramadol inhibits neuronal firing initially but leads to increased excitation over time, indicating complex neuroadaptive responses related to opioid and non-opioid neurotransmission.

Article Abstract

Introduction: Ventral Tegmental Area (VTA) is a core region of the brainstem that contributes to different vital bio-responses such as pain and addiction. The Dopaminergic (DA) cellular content of VTA has major roles in different functions. This study aims to evaluate the cellular effect of tramadol on the putative VTA-DA neurons.

Methods: Wistar rats were assigned into three groups of control, sham, and tramadol-treated. The animals were anesthetized and their VTA-DA neuronal activity was obtained under controlled stereotaxic operation. The firing rate of the neurons was extracted according to principal component analysis by Igor Pro software and analyzed statistically considering P<0.05 as significant. Tramadol (20 mg/kg) was infused intraperitoneally.

Results: Overall, 121 putative VTA-DA neurons were isolated from all groups. In tramadol-treated rats, the inhibition of the neuronal firing was proposed as tolerance and the excitation period as dependence or withdrawal. The Mean±SD inhibition time lasted up to 50.34±10.17 minutes and 31% of neurons stopped firing and silenced after 24±3 min on average but the remaining neurons lowered their firing up to 43% to 67% of their baseline firing. All neurons showed the excitation period, lasted about 56.12±15.30 min, and the firing of neurons increased from 176% to 244% of their baseline or pre-injection period.

Conclusion: The tolerance and dependence effects of tramadol are related to the changes in the neuronal firing rate at the putative VTA-DA neurons. The acute injection of tramadol can initiate neuroadaptation on the opioid and non-opioid neurotransmission to mediate these effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712631PMC
http://dx.doi.org/10.32598/bcn.9.10.180DOI Listing

Publication Analysis

Top Keywords

ventral tegmental
8
tegmental area
8
acute tramadol-induced
4
tramadol-induced cellular
4
cellular tolerance
4
tolerance dependence
4
dependence ventral
4
area dopaminergic
4
dopaminergic neurons
4
neurons vivo
4

Similar Publications

With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors.

View Article and Find Full Text PDF

Opioid reward and deep brain stimulation of the lateral hypothalamic area.

Vitam Horm

January 2025

Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Opioid use disorder (OUD) is considered a global health issue that affects various aspects of patients' lives and poses a considerable burden on society. Due to the high prevalence of remissions and relapses, novel therapeutic approaches are required to manage OUD. Deep brain stimulation (DBS) is one of the most promising clinical breakthroughs in translational neuroscience.

View Article and Find Full Text PDF

Pharmacological Characterization of the Novel Selective Kappa Opioid Receptor Agonists 10-Iodo-Akuammicine and 10-Bromo-Akuammicine in Mice.

Neuropharmacology

January 2025

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K values of 2.4 and 5.

View Article and Find Full Text PDF

Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.

Curr Biol

January 2025

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear.

View Article and Find Full Text PDF

Numerous studies support the role of dopamine in modulating aggression, but the exact neural mechanisms remain elusive. Here we show that dopaminergic cells in the ventral tegmental area (VTA) can bidirectionally modulate aggression in male mice in an experience-dependent manner. Although VTA dopaminergic cells strongly influence aggression in novice aggressors, they become ineffective in expert aggressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!