Understanding the genetic underpinning of adaptive divergence among populations is a key goal of evolutionary biology and conservation. Gunnison sage-grouse () is a sagebrush obligate species with a constricted range consisting of seven discrete populations, each with distinctly different habitat and climatic conditions. Though geographically close, populations have low levels of natural gene flow resulting in relatively high levels of differentiation. Here, we use 15,033 SNP loci in genomic outlier analyses, genotype-environment association analyses, and gene ontology enrichment tests to examine patterns of putatively adaptive genetic differentiation in an avian species of conservation concern. We found 411 loci within 5 kbp of 289 putative genes associated with biological functions or pathways that were overrepresented in the assemblage of outlier SNPs. The identified gene set was enriched for cytochrome P450 gene family members (CYP4V2, CYP2R1, CYP2C23B, CYP4B1) and could impact metabolism of plant secondary metabolites, a critical challenge for sagebrush obligates. Additionally, the gene set was also enriched with members potentially involved in antiviral response (DEAD box helicase gene family and SETX). Our results provide a first look at local adaption for isolated populations of a single species and suggest adaptive divergence in multiple metabolic and biochemical pathways may be occurring. This information can be useful in managing this species of conservation concern, for example, to identify unique populations to conserve, avoid translocation or release of individuals that may swamp locally adapted genetic diversity, or guide habitat restoration efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708427PMC
http://dx.doi.org/10.1111/eva.12825DOI Listing

Publication Analysis

Top Keywords

adaptive divergence
12
species conservation
12
conservation concern
12
divergence populations
8
avian species
8
gene set
8
set enriched
8
gene family
8
populations
6
gene
6

Similar Publications

Saturated fat in an evolutionary context.

Lipids Health Dis

January 2025

Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.

Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption.

View Article and Find Full Text PDF

Adapting a style based generative adversarial network to create images depicting cleft lip deformity.

Sci Rep

January 2025

Division of Plastic, Craniofacial and Hand Surgery, Sidra Medicine, and Weill Cornell Medical College, C1-121, Al Gharrafa St, Ar Rayyan, Doha, Qatar.

Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken.

View Article and Find Full Text PDF

Genome assembly of the grassland caterpillar Gynaephora qinghaiensis.

Sci Data

January 2025

State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

The grassland caterpillars are the most damaging insect pests to the alpine meadow of the Qinghai-Tibetan Plateau in China. In this study, we present a genome assembly of one grassland caterpillar Gynaephora qinghaiensis by using Oxford Nanopore long-read and BGI short-read sequencing. The genome assembly of 861.

View Article and Find Full Text PDF

Intraspecific gene regulation in cis- and trans.

Evolution

January 2025

Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America.

Changes in gene expression underlie much of evolution and occur via either cis-acting mutations, which lie near the affected gene and act in a context specific manner, or trans-acting mutations, which may be far from the affected gene and act through diffusible molecules such as transcription factors. A commonly held view is that most expression variation within species is controlled in trans- while expression differences between species are largely controlled in cis-. Here, we summarize recent intraspecific gene regulation studies and find, contrary to this widely held view, that many studies in diverse taxa have revealed a large role for cis-acting mutations underlying expression variation within species.

View Article and Find Full Text PDF

Objectives: Communication barriers, such as channels, comfort, and location, can negatively impact Black prostate cancer survivors' experiences and health outcomes after treatment. Addressing these barriers promotes a survivor-centric approach that views survivors as active partners in their care. This study explored the communication preferences of Black prostate cancer survivors, focusing on preferred channels, sources, and locations for enhanced quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!