A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Haploinsufficiency of drives glucocorticoid resistance in adult acute lymphoblastic leukemia cells by down-regulating the mitochondrial apoptosis axis, and is sensitive to Bcl-2 blockage. | LitMetric

Background: Relapse represents the leading cause of death in both child and adult patients with acute lymphoblastic leukemia (ALL). Development of chemo-resistance is ultimately responsible for treatment failure and relapse, therefore understanding the molecular basis underlying resistance is imperative for developing innovative treatment strategies. Glucocorticoids (GCs) such dexamethasone and prednisolone are the backbone of combination chemotherapy regimens for treating all lymphoid tumors. However, the biological mechanisms of primary GC resistance in ALL is not completely understood. We previously performed a longitudinal whole-exome sequencing analysis on diagnosis/relapse pairs from adult patients with ALL. Our data revealed that relapse-specific truncation mutations in the gene, encoding the GC receptor, are frequently detected.

Methods: In the current study, we used discovery-based strategies including RNA sequencing (RNA-seq) and CRISPR/Cas9, followed by confirmatory testing, in human ALL cell lines, bone marrow blast samples from ALL patients and xenograft models, to elucidate the mechanisms responsible for resistance.

Results: Our results revealed a positive correlation between endogenous expression of in ALL cells and sensitivity to GCs and clinical outcomes. We further confirmed that ectopic expression of in ALL cells could reverse GC resistance, while deletion of confers resistance to GCs in ALL cell lines and xenograft models. RNA-seq analysis revealed a remarkable abundance of gene signatures involved in pathways in cancer, DNA replication, mismatch repair, P53 signalling, cell cycle, and apoptosis regulated by Significantly increased expression of pro-apoptotic genes including , , , and , and decreased transcription of anti-apoptotic genes including , and were observed in GC-resistant ALL cells following ectopic expression of . Finally, we explored that GC resistance in ALL cells with haploinsufficiency of can be treated with Bcl-2 blockage.

Conclusions: Our findings suggest that the status of gene mutations and basal expression levels of in ALL cells are associated with sensitivity to GCs and clinical treatment outcomes. Early intervention strategies by rational combination of Bcl-2 blockage may constitute a promising new treatment option to GC-resistant ALL and significantly improving the chances of treating poor prednisone responders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708234PMC
http://dx.doi.org/10.1186/s12935-019-0940-9DOI Listing

Publication Analysis

Top Keywords

acute lymphoblastic
8
lymphoblastic leukemia
8
bcl-2 blockage
8
adult patients
8
cell lines
8
xenograft models
8
expression cells
8
sensitivity gcs
8
gcs clinical
8
ectopic expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!