AI Article Synopsis

  • Scientists are trying to find new ways to fight infections because some germs are becoming resistant to antibiotics.
  • They discovered that certain receptors in our immune cells, like CLEC4E and TLR4, help boost our body's defense against these germs.
  • By using special treatments that activate these receptors, they saw improved immunity and less bacteria in sick mice and guinea pigs, showing a new way to help our body fight infections.

Article Abstract

Unlabelled: Host-directed therapies are gaining considerable impetus because of the emergence of drug-resistant strains of pathogens due to antibiotic therapy. Therefore, there is an urgent need to exploit alternative and novel strategies directed at host molecules to successfully restrict infections. The C-type lectin receptor CLEC4E and Toll-like receptor TLR4 expressed by host cells are among the first line of defense in encountering pathogens. Therefore, we exploited signaling of macrophages through CLEC4E in association with TLR4 agonists (C.T) to control the growth of (). We observed significant improvement in host immunity and reduced bacterial load in the lungs of infected mice and guinea pigs treated with C.T agonists. Further, intracellular killing of was achieved with a 10-fold lower dose of isoniazid or rifampicin in conjunction with C.T than the drugs alone. C.T activated MYD88, PtdIns3K, STAT1 and RELA/NFKB, increased lysosome biogenesis, decreased and gene expression and enhanced macroautophagy/autophagy. Macrophages from autophagy-deficient ( knockout or knockdown) mice showed elevated survival of . The present findings also unveiled the novel role of CLEC4E in inducing autophagy through MYD88, which is required for control of growth. This study suggests a unique immunotherapeutic approach involving CLEC4E in conjunction with TLR4 to restrict the survival of through autophagy.

Abbreviations: 3MA: 3 methyladenine; AO: acridine orange; Atg5: autophagy related 5; AVOs: acidic vesicular organelles; BECN1: beclin 1, autophagy related; BMDMs: bone marrow derived macrophages; bw: body weight; C.T: agonists of CLEC4E (C/TDB) and TLR4 (T/ultra-pure-LPS); CFU: colony forming unit; CLEC4E/Mincle: C-type lectin domain family 4, member e; CLR: c-type lectin receptor; INH: isoniazid; LAMP1: lysosomal-associated membrane protein 1; Mφ: infected C.T stimulated macrophages; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MDC: monodansylcadaverine; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response 88; NFKB: nuclear factor of kappa light polypeptide gene enhance in B cells; NLR: NOD (nucleotide-binding oligomerization domain)-like receptors; PFA: paraformaldehyde; PPD: purified protein derivative; PtdIns3K: class III phosphatidylinositol 3-kinase; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIF: rifampicin; RLR: retinoic acid-inducible gene-I-like receptors; TDB: trehalose-6,6´-dibehenate; TLR4: toll-like receptor 4; Ultra-pure-LPS: ultra-pure lipopolysaccharide-EK; V-ATPase: vacuolar-type H ATPase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469444PMC
http://dx.doi.org/10.1080/15548627.2019.1658436DOI Listing

Publication Analysis

Top Keywords

c-type lectin
12
restrict survival
8
lectin receptor
8
toll-like receptor
8
control growth
8
clec4e
6
tlr4
6
induction autophagy
4
autophagy clec4e
4
clec4e combination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!