Mycobacterial infection, leading to pulmonary disease, remains a world health problem. Clinical symptoms of pulmonary disease caused by complex (MTBC) and nontuberculous mycobacteria (NTM) are very similar. A rapid method for the differentiation of MTBC and NTM infection is essential for appropriate therapy. In this study, we aim to establish an antibody-based biosensor system for the identification of MTBC and NTM infection. Monoclonal antibodies (mAbs) specific for Ag85B proteins of mycobacteria were generated and characterized. The generated anti-Ag85B mAb clones AM85B-5 and AM85B-8 reacted to Ag85B of spp.; in contrast, clone AM85B-9 specifically reacted to Ag85B of MTBC. By employing the produced mAbs, single and sandwich antibody-based biosensors using bio-layer interferometry were established for determination of Ag85B proteins. The sandwich antibody-based biosensor system was demonstrated to be suitable for detection of Ag85B protein and identification of MTBC and NTM. Using anti-Ag85B mAbs AM85B-8 and AM85B-9 as immobilized antibodies on sensor chips and using mAb AM85B-5 as secondary antibody, the established sandwich antibody-based biosensor could discriminate MTBC and NTM. The developed biosensor system can be used for culture confirmation of mycobacteria and speciation to MTBC and NTM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15321819.2019.1659814 | DOI Listing |
Microorganisms
December 2024
Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
Background: Accurate and timely diagnosis of mycobacterial infections, including complex (MTBC) and nontuberculous mycobacteria (NTM), is crucial for effective disease management.
Methods: This study evaluated the performance of the NeoPlex TB/NTM-5 Detection Kit (NeoPlex assay, Seongnam, Republic of Korea), a multiplex real-time PCR assay that incorporates melting curve analysis, compared with the line-probe assay (LPA). The NeoPlex assay could simultaneously detect and differentiate MTBC from five other NTM species: , , , , and .
Vet Clin North Am Small Anim Pract
January 2025
Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, 2108 Tupper Hall, Davis, CA 95616, USA. Electronic address:
Worldwide, a variety of mycobacterial species have been associated with skin lesions in dogs and cats. Lesions may result from systemic dissemination or local cutaneous inoculation. Only infections with Mycobacterium tuberculosis complex organisms have the potential to be transmitted from companion animals to humans, but even then, zoonotic risk is considered low.
View Article and Find Full Text PDFInt J Mycobacteriol
October 2024
Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
Background: Pulmonary tuberculosis (TB) is predominantly caused by Mycobacterium tuberculosis complex (MTBC) and can also involve nontuberculous mycobacteria (NTM). These pathogens pose significant global health challenges, particularly in developing countries. Differentiating between MTBC and NTM in clinical specimens is often difficult using conventional acid-fast staining methods, leading to an underestimation of NTM prevalence in TB-endemic regions.
View Article and Find Full Text PDFPLoS One
December 2024
Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium.
Background: Non-tuberculous mycobacteria (NTM) are environmental agents that can cause opportunistic pulmonary disease in humans and animals, often misdiagnosed as tuberculosis (TB). In this study, we describe the cases of NTM identified during the first national anti-TB drug resistance survey conducted in Mali and explore associated risk factors.
Methods: Sputum was collected from people presenting for pulmonary TB diagnosis from April to December 2019, regardless of age.
J Bone Jt Infect
October 2024
Department of Infection, Royal Free Hospital, London, NW3 2QG, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!