The zeolite production process is currently being very intensively researched. Due to environmental protection, as well as issues related to the guidelines of a zero-waste economy, all activities aimed at obtaining such materials from post-processed waste are extremely important. This article presents an innovative method of utilising calcined carboniferous shale in order to produce synthetic zeolites. The raw material for testing came from two Polish hard coal mines. Both the chemical and phase composition of the coal shale were characterised. Based on the recorded thermal analysis results coupled with the mass spectrometer, the processes occurring during the heating of raw materials were interpreted and the calcination temperatures were determined. The changes in the phase composition of raw materials resulting from the calcination process used were also analysed. The heat-treated raw materials were subjected to the synthesis of zeolites in an aqueous solution of sodium hydroxide by means of the hydrothermal method at a concentration of 2.75 M. The results of water leaching and structural parameters are presented for both raw materials, as well as the produced synthesis. The conducted research confirmed that after the application of the synthetic process on coal shale, a zeolite with a surface area of equal to 172 m/g can be obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747971PMC
http://dx.doi.org/10.3390/ma12172742DOI Listing

Publication Analysis

Top Keywords

raw materials
16
synthesis zeolites
8
phase composition
8
coal shale
8
materials
6
raw
5
calcined post-production
4
post-production waste
4
waste materials
4
materials suitable
4

Similar Publications

Background: Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula.

View Article and Find Full Text PDF

The efficacy and safety of drugs are closely related to the geographical origin and quality of the raw materials. This study focuses on using near-infrared hyperspectral imaging (NIR-HSI) combined with machine learning algorithms to construct content prediction models and origin identification models to predict the components and origin of Radix Paeoniae Rubra (RPR). These models are quick, non-destructive, and accurate for assessing both component content and origin.

View Article and Find Full Text PDF

Physical anatomical models constructed from medical images are valuable research tools for evaluating patient-specific clinical circumstances. For example, 3D models replicating a patient's internal anatomy in the cardiovascular system can be used to validate Computational Fluid Dynamics (CFD) models, which can then be used to identify potential hemodynamic consequences of surgical decisions by providing insight into how blood and vascular tissue mechanics may contribute to disease progression and post-operative complications. Patient-specific models have been described in the literature; however, rapid prototyping models that achieve anatomical accuracy, optical transparency, and thin-walled compliance in a cost and time-effective approach have proven challenging.

View Article and Find Full Text PDF

Background: Bangladesh Rural Advancement Committee (BRAC), a leading non-governmental organization (NGO), implemented a large-scale Home Fortification (HF) with Micronutrient Powder (MNP) programme from 2013 to 2018 aimed to reduce undernutrition and iron deficiency anemia among children aged below 5 years old. An adequate and timely supply of MNP was crucial for successful implementation of the programme, but very few studies have documented implementers' MNP supply chain experiences. Therefore, this study aimed to explore the barriers and enablers in the MNP supply chain in Bangladesh.

View Article and Find Full Text PDF

One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!