Most intracellular pathogens that reside in a vacuole prevent transit of their compartment to lysosomal organelles. Effector mechanisms induced by the pro-inflammatory cytokine Interferon-gamma (IFNγ) can promote the delivery of pathogen-occupied vacuoles to lysosomes for proteolytic degradation and are therefore important for host defense against intracellular pathogens. The bacterial pathogen Coxiella burnetii is unique in that, transport to the lysosome is essential for replication. The bacterium modulates membrane traffic to create a specialized autophagolysosomal compartment called the Coxiella-containing vacuole (CCV). Importantly, IFNγ signaling inhibits intracellular replication of C. burnetii, raising the question of which IFNγ-activated mechanisms restrict replication of a lysosome-adapted pathogen. To address this question, siRNA was used to silence a panel of IFNγ-induced genes in HeLa cells to identify genes required for restriction of C. burnetii intracellular replication. This screen demonstrated that Indoleamine 2,3-dioxygenase 1 (IDO1) contributes to IFNγ-mediated restriction of C. burnetii. IDO1 is an enzyme that catabolizes cellular tryptophan to kynurenine metabolites thereby reducing tryptophan availability in cells. Cells deficient in IDO1 function were more permissive for C. burnetii replication when treated with IFNγ, and supplementing IFNγ-treated cells with tryptophan enhanced intracellular replication. Additionally, ectopic expression of IDO1 in host cells was sufficient to restrict replication of C. burnetii in the absence of IFNγ signaling. Using differentiated THP1 macrophage-like cells it was determined that IFNγ-activation resulted in IDO1 production, and that supplementation of IFNγ-activated THP1 cells with tryptophan enhanced C. burnetii replication. Thus, this study identifies IDO1 production as a key cell-autonomous defense mechanism that limits infection by C. burnetii, which suggests that peptides derived from hydrolysis of proteins in the CCV do not provide an adequate supply of tryptophan for bacterial replication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736304 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1007955 | DOI Listing |
Ribosome biogenesis is pivotal in the self-replication of life. In Escherichia coli, three ribosomal RNAs and 54 ribosomal proteins are synthesized and subjected to cooperative hierarchical assembly facilitated by numerous accessory factors. Realizing ribosome biogenesis in vitro is a critical milestone for understanding the self-replication of life and creating artificial cells.
View Article and Find Full Text PDFNat Commun
January 2025
Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/01kj2bm70 Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
Pathogenic variants in cytochrome oxidase assembly factor 5 (COA5), a proposed complex IV (CIV) assembly factor, have been shown to cause clinical mitochondrial disease with two siblings affected by neonatal hypertrophic cardiomyopathy manifesting a rare, homozygous missense variant (NM_001008215.3: c.157G>C, p.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun 130118, China; Jilin Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China. Electronic address:
Hesperidin exhibits promising potential as a feed additive for augmenting gastric acid secretion in animals. Gastrointestinal function is essential for animal growth and the efficient digestion of dietary nutrients, with gastric acid secretion serving as one of its critical components. The secretion of gastric acid, together with other digestive fluids and substances, significantly influences the digestion and absorption of animal feed, which in turn affects growth performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!