A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of dynamic collimation mechanisms for helical CT scans with direct measurements. | LitMetric

Characterization of dynamic collimation mechanisms for helical CT scans with direct measurements.

Phys Med Biol

Author to whom correspondence should be addressed.

Published: October 2019

AI Article Synopsis

  • Dynamic collimation is crucial for reducing radiation exposure in helical CT scans, and this study aims to analyze its effectiveness with modern wide-beam CT scanners.* -
  • The research involved measuring x-ray beam coverage for four different CT scanner models while varying scan parameters, using a solid state detector positioned at the isocenter during scans.* -
  • Results indicated that dynamic collimation can reduce radiation dose by 2% to 32% depending on the specific scan type, with derived equations to calculate dose reductions for different mechanisms.*

Article Abstract

Dynamic collimation is an important dose reduction mechanism for helical CT scans, especially for modern wide-beam scanner models. Its implementation and efficacy need to be studied to optimize CT scan protocols and to reduce unnecessary patient dose. The purpose of this study is to evaluate dynamic beam collimation for modern wide-beam CT scanners with direct measurements and to estimate the efficacy for dose reduction. By using a linear-array solid state detector, primary x-ray beam coverage was measured for four CT scanner models: GE Revolution CT, Siemens Somatom Force, Philips iQon, and GE LightSpeed VCT. Supported independently from patient table, the detector remained stationary at the isocenter during helical scans. Data lines were recorded every 0.24 ms throughout one entire helical scan, with a spatial resolution of 0.8 mm along the craniocaudal direction. The measurements were repeated for various scan parameters related to dynamic collimation, including beam collimation width, pitch, rotation time, and scan length. The recorded beam coverage area was used as a surrogate to total primary dose, to model different dynamic collimation mechanisms. The directly measured total radiation range was compared to table travel distance and nominal scan length which equals to the ratio between DLP and CTDIvol. Equations to calculate the percentage dose reduction with dynamic collimation were derived for different mechanisms. Three different dynamic collimation mechanisms were revealed and related linear model parameters were reported for different helical scan parameters. The nominal scan length used to calculate DLP was shown to vary for different dynamic collimation mechanisms. For typical head and abdomen scans with nominal scan lengths of 17.5 cm and 25 cm, percentage dose reduction from dynamic collimation ranged from 2% to 32%. In conclusion, with direct measurements of primary x-ray beam coverage, dynamic collimation mechanisms and related dose reduction effects were characterized for four modern wide-beam CT scanners.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab3eaaDOI Listing

Publication Analysis

Top Keywords

dynamic collimation
36
collimation mechanisms
20
dose reduction
20
helical scans
12
direct measurements
12
modern wide-beam
12
beam coverage
12
scan length
12
nominal scan
12
collimation
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: