The practical application of optoelectronic artificial synapses in neuromorphic visual systems is still hindered by their limited functionality, reliability and the challenge of mass production. Here, an electro-photo-sensitive synapse based on a highly reliable amorphous InGaZnO thin-film transistor is demonstrated. Not only does the synapse respond to electrical voltage spikes due to charge trapping/detrapping, but also the weight is modified directly by persistent photocurrent effects under UV-light stimulation. Representative forms of synaptic plasticity, including inhibitory and excitatory postsynaptic currents, frequency-dependent characteristics, short-term to long-term plasticity transitions, and summation effects, are successfully demonstrated. In particular, optoelectronic synergetic modulation leads to reconfigurable excitatory and inhibitory synaptic behaviors, which provides a promising way to achieve the homeostatic regulation of synaptic weights. Moreover, the analogue channel conductance with 100 states is used as the weight update rule to perform MNIST handwritten digit recognition, using system-level LeNet-5 convolutional neural network simulations. The network shows a high recognition accuracy of 95.99% and good tolerance to noisy input patterns. This study highlights the commercial potential of mature optoelectronic InGaZnO transistor technology in edge neuromorphic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr04195hDOI Listing

Publication Analysis

Top Keywords

edge neuromorphic
8
neuromorphic visual
8
visual systems
8
electro-photo-sensitive synaptic
4
synaptic transistor
4
transistor edge
4
systems practical
4
practical application
4
application optoelectronic
4
optoelectronic artificial
4

Similar Publications

An Analysis of Components and Enhancement Strategies for Advancing Memristive Neural Networks.

Adv Mater

January 2025

Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.

Advancements in artificial intelligence (AI) and big data have highlighted the limitations of traditional von Neumann architectures, such as excessive power consumption and limited performance improvement with increasing parameter numbers. These challenges are significant for edge devices requiring higher energy and area efficiency. Recently, many reports on memristor-based neural networks (Mem-NN) using resistive switching memory have shown efficient computing performance with a low power requirement.

View Article and Find Full Text PDF

Resistive memory-based zero-shot liquid state machine for multimodal event data learning.

Nat Comput Sci

January 2025

Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.

View Article and Find Full Text PDF

Ultra-Flexible High-Linearity Silicon Nanomembrane Synaptic Transistor Array.

Adv Mater

January 2025

School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.

The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.

View Article and Find Full Text PDF

Two-Dimensional Materials for Brain-Inspired Computing Hardware.

Chem Rev

January 2025

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed.

View Article and Find Full Text PDF

Spiking Neural Networks (SNNs) are typically regards as the third generation of neural networks due to their inherent event-driven computing capabilities and remarkable energy efficiency. However, training an SNN that possesses fast inference speed and comparable accuracy to modern artificial neural networks (ANNs) remains a considerable challenge. In this article, a sophisticated SNN modeling algorithm incorporating a novel dynamic threshold adaptation mechanism is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!