Using all-atom molecular dynamics simulations of aqueous solutions of the globular protein SNase, the dynamic behavior of water molecules and cosolvents (trimethylamine-N-oxide (TMAO) and urea) in the hydration shell of the protein was studied for different solvent compositions. TMAO is a potent protein-stabilizing osmolyte, whereas urea is known to destabilize proteins. For molecules that are initially located in successive narrow layers at a given distance from the protein, the mean displacements and the distribution of displacements for short time intervals are calculated. For molecules that are initially located in solvation shells of a given thickness around the protein, the characteristic residence times in these shells are determined to characterize the dynamic behavior of the solvent molecules as a function of the distance to the protein. A combined consideration of these characteristics allows to reveal additional features of the dynamics of the cosolvents. It is shown that TMAO molecules leave the nearest vicinity of the protein faster than urea molecules, despite the fact that the mobility of TMAO molecules, measured by their mean displacements, is lower than that of urea. Moreover, we show that the rate of release of TMAO molecules from the hydration shell is lower in ternary (TMAO + urea + HO) solvent mixtures than in the binary ones. This is consistent with a recent observation that the fraction of TMAO near the protein decreases in the presence of urea. From the analysis of the decay of the number of particles initially located in the region of the first peak of the distribution function of solvent molecules around the protein, we estimated that about 20 water molecules and 6-7 urea molecules stay near the protein for more than 1000 ps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp03184g | DOI Listing |
J Phys Chem B
December 2024
Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
Physiol Res
November 2024
Department of Physiology, Hebei Medical University, Shijiazhuang, China. Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
Trimethylamine N-oxide (TMAO), a bioactive metabolite of gut microbes, plays a pivotal role in the pathogenesis of kidney diseases by activating programmed cell death (PCD) pathways. However, whether trimethylamine (TMA) contributes to chronic kidney injury and which kind of PCD is involved in TMA-induced chronic kidney injury has not been previously evaluated. To observe the effect of TMA, male C57BL/6J mice were randomly divided into two groups: the Control group and the TMA group.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Phys Chem Chem Phys
August 2024
Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
In biomedical and biotechnological domains, liquid protein formulations are vital tools, offering versatility across various fields. However, maintaining protein stability in a liquid form presents challenges due to environmental factors, driving research to refine formulations for broader applications. In our recent study, we investigated the relationship between deep eutectic solvents (DESs) and the natural presence of osmolytes in specific combinations, showcasing the effectiveness of a bioinspired osmolyte-based DES in stabilizing a model protein.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2024
Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
We examined the effects of trimethylamine -oxide (TMAO) and urea (known osmolytes) on the liquid-liquid phase separation (LLPS) of fused in sarcoma (FUS) and three FUS-LLPS states: LLPS states at atmospheric pressure with low- and high-salt concentrations and a re-entrant LLPS state above 2 kbar. Temperature- and pressure-scan turbidity measurements revealed that TMAO and urea contributed to stabilizing and destabilizing LLPS, respectively. These results can be attributed to the excluded volume effect of TMAO (preferential hydration) and preferential interaction of urea with proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!