Ruthenium-containing tetraphenylporphyrin (Ru-TPP) molecule was prepared, and the structural elucidation was confirmed using H nuclear magnetic resonance (NMR), CHN, and mass spectral analyses. The incorporation of ruthenium ion into the cavities of the macromolecule was confirmed from the disappearance of the H NMR signal, characteristic of the N-H bond (-2.72 ppm in TPP). The CHN and mass spectral analyses of the ligand and metallomacromolecules are consistent with the theoretically calculated values. The homogeneous Ru-TPP macromolecule is grafted on the surface of aminosilane-, diaminosilane-, and iodosilane-functionalized SBA-15 molecular sieves. The successful grafting of Ru-TPP on functionalized mesoporous molecular sieve materials was evident from low-angle powder X-ray diffraction, C magic angle spinning NMR, and scanning electron microscopy-energy-dispersive X-ray analyses. The resultant homogeneous and heterogenized Ru-TPP catalysts were used for the utilization of carbon dioxide (CO) under moderate reaction conditions. The homogeneous Ru-TPP catalyst showed first-order kinetics with respect to epoxide with the exclusive formation of cyclic carbonate (about 98%) and an activation energy of 16.07 kg/mol, which is much lower than some of the reported catalysts. Ru-TPP grafted on aminosilane- and iodosilane-functionalized materials showed better catalytic activity (above 90% conversion and 83-96% cyclic carbonate selectivity) and reusability for the chosen reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705283 | PMC |
http://dx.doi.org/10.1021/acsomega.9b01741 | DOI Listing |
Environ Res
December 2024
School of Civil Engineering, Shandong University, Jinan 250061, China. Electronic address:
The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).
View Article and Find Full Text PDFChemosphere
December 2024
Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA. Electronic address:
Phosphate (PO(III)) contamination in water bodies poses significant environmental challenges, necessitating efficient and accurate methods to predict and optimize its removal. The current study addresses this issue by predicting the adsorption capacity of PO(III) ions onto biochar-based materials using five probabilistic machine learning models: eXtreme Gradient Boosting LSS (XGBoostLSS), Natural Gradient Boosting, Bayesian Neural Networks (NN), Probabilistic NN, and Monte-Carlo Dropout NN. Utilizing a dataset of 2952 data points with 16 inputs, XGBoostLSS demonstrated the highest R (0.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. Electronic address:
Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China. Electronic address:
Vibrio-induced diseases pose a significant threat to shrimp aquaculture. While the mechanisms underlying Vibrio penetration of shrimp shells and the gastrointestinal tract remain unclear, this study implicates chitinases as critical virulence factors. Despite their inability to utilize chitin or shrimp shells as sole carbon and nitrogen sources, three major shrimp pathogens-V.
View Article and Find Full Text PDFFood Chem
December 2024
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!