A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Synthetic Cytochrome P-Mimetic Metalloporphyrins To Facilitate "Biomimetic" Biotransformation of a Series of mGlu Allosteric Ligands. | LitMetric

Allosteric ligands within a given chemotype can have the propensity to display a wide range of pharmacology, as well as unexpected changes in GPCR subtype selectivity, typically mediated by single-atom modifications to the ligand. Due to the unexpected nature of these "molecular switches", chemotypes with this property are typically abandoned in lead optimization. Recently, we have found that in vivo oxidative metabolism by CYPs can also engender molecular switches within allosteric ligands, changing the mode of pharmacology and leading to unwanted toxicity. We required a higher-throughput approach to assess in vivo metabolic molecular switches, and we turned to a "synthetic liver", a 96 well kit of biomimetic catalysts (e.g., metalloporphyrins) to rapidly survey a broad panel of synthetic CYPs' ability to oxidize/"metabolize" an mGlu PAM (VU0403602) known to undergo an in vivo CYP-mediated molecular switch. While the synthetic CYPs did generate a number of oxidative "metabolites" at known "hot spots", several of which proved to be pure mGlu PAMs comparable in potency to the parent, the known CYP-mediated in vivo ago-PAM metabolite, namely, VU0453103, was not formed. Thus, this technology platform has potential to identify hot spots for oxidative metabolism and produce active metabolites of small-molecule ligands in a high-throughput, scalable manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690571PMC
http://dx.doi.org/10.1021/acsomega.9b02017DOI Listing

Publication Analysis

Top Keywords

allosteric ligands
12
oxidative metabolism
8
molecular switches
8
evaluation synthetic
4
synthetic cytochrome
4
cytochrome p-mimetic
4
p-mimetic metalloporphyrins
4
metalloporphyrins facilitate
4
facilitate "biomimetic"
4
"biomimetic" biotransformation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!