A multifunctional supramolecular assembly was successfully constructed by the host-guest complexation of doubly positively charged adamantane (ADA) with β-CD-modified hexabenzocoronene and the π-stacking of coronene with mitoxantrone, which was characterized by transmission electron microscopy, scanning electron microscopy, dynamic light-scattering, and zeta potential experiments. Possessing a small size and rigid backbone coronene center, the water-soluble biocompatible supramolecular assembly has intracellular imaging abilities. Moreover, after the ester group of ADA was hydrolyzed into a carboxyl group, the positively charged quaternary amine strand converted into a zwitterion structure, which realized the controlled plasmid DNA binding and release. Besides, the cytotoxicity experiments showed that the supramolecular assembly possesses slightly lower toxicity and a slightly higher anticancer activity than free drug. We believe that this work might present a convenient method for synergetic cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682016 | PMC |
http://dx.doi.org/10.1021/acsomega.9b01436 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.
Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.
View Article and Find Full Text PDFNano Lett
January 2025
Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.
View Article and Find Full Text PDFChemistry
January 2025
Brandeis University, Chemistry, 415 South Street,, Waltham, 02453, UNITED STATES OF AMERICA.
We designed and synthesized three diacetylene monomers M1-M3 having two NH2 groups. As anticipated, the NH2 groups aided the preorganization of these monomers by N-H…N hydrogen bonding. In the crystals of monomer M1 and M2, the intermolecular N-H…N hydrogen bonding preorganized the diyne units in an orientation suitable for their topochemical polymerization, but in the case of monomer M3, the distance was slightly larger than that recommended for the topochemical reaction.
View Article and Find Full Text PDFChemistry
January 2025
University of Hyderabad School of Chemistry, School of Chemistry, School of Chemistry, University of Hyderabad, 500046, Hyderabad, INDIA.
The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical. A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical. This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Molecular Recognition and Function, Zhongguancun North First Street 2, 100190, Beijing, CHINA.
Fluorescent macrocyclic arenes have attracted increasing interest in macrocyclic and supramolecular chemistry due to their exceptional photophysical properties and versatile applications. Classical macrocyclic arenes modified with fluorescent groups at the upper or bottom rims have long provided valuable platforms across various fields. Recently, a large number of novel fluorescent macrocyclic arenes directly composed of polycyclic aromatic or heteroaromatic building blocks including naphthalene, anthracene, tetraphenylethene, pyrene, fluorene, carbazole, acridan, phenothiazine, coumarin, triphenylamine, benzothiadiazole and so on, have been reported, and they have shown specific fluorescent property, and also exhibited broad applications in molecular recognition, sensing, bioimaging and functional materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!