Organoruthenium complexes are potent alternatives for platinum-based complexes because of their superior anticancer activity. In this investigation, a series of new Ru(II)-arene complexes with triarylamine-thiosemicarbazone hybrid ligands with higher anticancer activity than cisplatin are reported. The molecular structure of the ligands and complexes was confirmed spectroscopically and supported by single-crystal X-ray crystallography. These complexes adopted a three-leg piano stool geometry. All the Ru(II)-arene complexes were systematically investigated for their in vitro cytotoxicity against human cervical (HeLa S3), lung (A549) cancer, and human normal lung (IMR-90) cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Interestingly, a pyrrolidine-attached Ru(II)-benzene complex exhibited superior activity against cancer cells with low IC values, and colony formation study showed complete inhibition at 5 and 10 μM concentration. Furthermore, morphological changes assessed by acridine orange and propidium iodide staining revealed that the cell death occurred by apoptosis. In addition, the interaction between synthesized Ru(II)-arene complexes and DNA/protein was explored by absorption and emission spectroscopy methods. These synthesized new organoruthenium complexes can be used for developing new metal-based anticancer drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682138 | PMC |
http://dx.doi.org/10.1021/acsomega.9b01022 | DOI Listing |
Dalton Trans
September 2020
Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy.
Due to the extraordinary success of porphyrins in photodynamic therapy (PDT) and Ru compounds as chemotherapeutics, a series of RuII-porphyrin complexes have recently been synthesized and proposed as promising dual-action therapeutic agents. The results of a careful DFT and TDDFT investigation on four mononuclear pyridyl triphenylporphyrin RuII-arene complexes are herein reported and compared with those obtained for the metal-free derivatives. The investigation aims at shedding light on the modulation of the photophysical properties of the light absorber upon metalation and exploring the hydrolysis process of the RuII-moiety in the presence of the bulky porphyrin unit.
View Article and Find Full Text PDFMolecules
June 2014
School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
RuII(arene) complexes have emerged as a versatile class of compounds to design metallodrugs as potential treatment for a wide range of diseases including cancer and malaria. They feature modes of action that involve classic DNA binding like platinum anticancer drugs, may covalent binding to proteins, or multimodal biological activity. Herein, we report the synthesis and urease inhibition activity of RuII(arene) complexes of the general formula [RuII(η6-p-cymene)(L)Cl2] and [RuII(η6-p-cymene)(PPh3)(L)Cl]PF6 with S-donor systems (L) based on heterocyclic thiourea derivatives.
View Article and Find Full Text PDFJ Med Chem
December 2012
Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
RuII(arene) complexes have been shown to be promising anticancer agents, capable of overcoming major drawbacks of currently used chemotherapeutics. We have synthesized RuII(η6-arene) compounds carrying bioactive flavonol ligands with the aim to obtain multitargeted anticancer agents. To validate this concept, studies on the mode of action of the complexes were conducted which indicated that they form covalent bonds to DNA, have only minor impact on the cell cycle, but inhibit CDK2 and topoisomerase IIα in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!