This work describes a facile synthesis of polymer-capped silver nanoparticles at room temperature. Chitosan oligosaccharide lactate-capped silver nanoparticles (COL-AgNPs) show the surface plasma resonance (SPR) band at 400 nm. The color of the COL-AgNPs was observed to be brownish yellow. The synthesized COL-AgNPs are stable for 5 months. The COL-AgNPs were characterized by UV-vis, X-ray diffraction, high-resolution transmission electron microscopy (HR-TEM), mass, and Fourier transform infrared spectral techniques. The obtained COL-AgNPs are monodispersed, and the range of the particle diameter was calculated to be 16.37 ± 0.15 nm by HR-TEM. We have utilized the COL-AgNPs as a probe to sense iodide (I). The SPR band of COL-AgNPs was decreased after the addition of iodide, and the color of the solution changed to colorless. Based on the decreases in SPR band absorbance, the concentration of iodide was calculated. The detection limit was found to be 108.5 × 10 M (S/N = 3). Other interferences (825- and 405-fold) did not interfere with the detection of 1.48 × 10 M iodide. The sensing mechanism was also discussed. Finally, we have successfully applied our sensing system for the detection of iodide in tap water, river water, pond water, blood serum, urine, and food samples. Good recoveries are obtained with spiked iodide in the real samples. Importantly, we have developed a paper-based kit using wax-printed paper for the on-site monitoring of iodide. The developed paper-based kit absorbance was validated with the microplate reader. To the best of our knowledge, this is the first report that used six different real samples for the detection of iodide and development of the paper-based kit for on-site monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682123PMC
http://dx.doi.org/10.1021/acsomega.9b01144DOI Listing

Publication Analysis

Top Keywords

detection iodide
12
silver nanoparticles
12
on-site monitoring
12
spr band
12
paper-based kit
12
iodide
9
polymer-capped silver
8
kit on-site
8
real samples
8
developed paper-based
8

Similar Publications

This review highlights recent advancements and challenges in fluorescence-based chemical sensors for selective and sensitive detection of perchlorate, a persistent environmental pollutant and global concern due to its health and safety implications. Perchlorate is a highly persistent inorganic pollutant found in drinking water, soil, and air, with known endocrine-disruptive properties due to its interference with iodide uptake by the thyroid gland. Human exposure mainly occurs through contaminated water and food.

View Article and Find Full Text PDF

This study demonstrates the effectiveness of propidium iodide as a reliable marker for detecting dead or dying cells in frozen liver tissue sections. By comparing propidium iodide staining with the widely used Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, both methods showed consistent results in disease models such as alcohol-induced fibrosis and Western diet-induced fatty liver. Additionally, propidium iodide was successfully co-stained with other fluorescent markers, like phalloidin (for actin filaments) and antibodies targeting collagen, enabling detailed spatial analysis of dying cells within tissue.

View Article and Find Full Text PDF
Article Synopsis
  • A cationic N-heterocyclic phosphenium iron tetracarbonyl complex was synthesized and its reactivity with various anionic reactants was investigated, resulting in different products depending on the anion involved.
  • Reactions with fluoride and chloride produced neutral diazaphospholenes, while bromide and iodide led to NHP iron halides through metal addition and decarbonylation.
  • At room temperature, the cationic complex primarily reduced to form a detectable Fe-centered radical, whereas at -78 °C, CH-metalation was favored, further evidenced by the characterization of a neutral borane-adduct.
  • The complex’s reactivity variations are attributed to its higher electrophilicity compared to neutral complexes
View Article and Find Full Text PDF

Determination of residual alkyl iodides and alkyl bromides as their corresponding alkyl chlorides in drug substances by headspace GC-FID.

Heliyon

December 2024

Curia Wisconsin, Inc. D/B/A Siegfried Acceleration Hub, 870 Badger Circle, Grafton, WI, 53024, United States.

Primary and secondary alkyl iodides and primary alkyl bromides were quickly and conveniently converted into their corresponding alkyl chlorides via S2 halide-halide substitution. The resultant alkyl chlorides simultaneously demonstrated increased volatility and stability paired with standard headspace GC-FID methodology. The derivatization was performed on both standard and sample alike and occurred during the headspace oven equilibration phase, eliminating the extra reaction step traditionally performed during many derivatization analyses.

View Article and Find Full Text PDF

In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!