Environmentally Benign, Base-Promoted Selective Amination of Polyhalogenated Pyridines.

ACS Omega

Zhejiang Hisoar Pharmaceutical Company Limited, Taizhou 318000, PR China.

Published: June 2019

An environmentally benign, highly efficient, and base-promoted selective amination of various polyhalogenated pyridines including the challenging pyridine chlorides to 2-aminopyridine derivatives using water as solvent has been developed. Featuring the use of the new method, the reaction is extended to the transformation on a large scale. Mechanistic studies indicate that the pathway involving a base aidant dissociation of ,-dimethylformamide to generate dimethylamine is likely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648585PMC
http://dx.doi.org/10.1021/acsomega.9b01031DOI Listing

Publication Analysis

Top Keywords

environmentally benign
8
base-promoted selective
8
selective amination
8
amination polyhalogenated
8
polyhalogenated pyridines
8
benign base-promoted
4
pyridines environmentally
4
benign highly
4
highly efficient
4
efficient base-promoted
4

Similar Publications

There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control.

View Article and Find Full Text PDF

Urological diseases and their varied forms of management warrant special attention in the setting of climate change. Regarding urological cancers, climate change will probably increase the incidence and severity of cancer diagnoses through exposures to certain environmental risk factors, while simultaneously disrupting cancer care delivery and downstream outcomes. Regarding benign urological diseases, a burgeoning body of work exists on climate-related heat waves, dehydration, urolithiasis, renal injury and infectious and vector-borne diseases.

View Article and Find Full Text PDF

Association between airway microbiota and systemic inflammation markers in non-small cell lung cancer patients.

Sci Rep

January 2025

Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

Growing evidences have suggested the airway microbiota may participate in lung cancer progression. However, little was known about the relationship between airway microbiota and lung cancer associated systemic inflammation. Here we aimed to explore the association between sputum microbiota and systemic inflammation in lung cancer.

View Article and Find Full Text PDF

Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.

View Article and Find Full Text PDF

Biogenic nanoparticles as a promising drug delivery system.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt.

Nanotechnology has significantly influenced the worldwide medical services sector during the past few decades. Biological collection approaches for nanoparticles are economical, non-toxic, and ecologically benign. This review provides up-to-date information on nanoparticle production processes and biological sources, including algae, plants, bacteria, fungus, actinomycetes, and yeast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!