[This corrects the article DOI: 10.1021/acsomega.7b01902.].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648945PMC
http://dx.doi.org/10.1021/acsomega.9b01597DOI Listing

Publication Analysis

Top Keywords

correction "high-resolution
4
"high-resolution adhesion
4
adhesion kinetics
4
kinetics egcg-exposed
4
egcg-exposed tumor
4
tumor cells
4
cells biomimetic
4
biomimetic interfaces
4
interfaces comparative
4
comparative monitoring
4

Similar Publications

High-resolution analysis of human centromeric chromatin.

Life Sci Alliance

April 2025

National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA

Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays.

View Article and Find Full Text PDF

Purpose: MR-based FID navigators (FIDnavs) do not require gradient pulses and are attractive for prospective motion correction (PMC) due to short acquisition times and high sampling rates. However, accuracy and precision are limited and depend on a separate calibration measurement. Besides FIDnavs, stationary NMR field probes are also capable of measuring local, motion-induced field changes.

View Article and Find Full Text PDF

Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.

View Article and Find Full Text PDF

For optimizing production yield while limiting negative environmental impact, sustainable agriculture benefits from real-time, on-the-spot chemical analysis of soil at low cost. Colorimetric paper sensors are ideal candidates, however, their automated readout and analysis in the field is needed. Using mobile technology for paper sensor readout could, in principle, enable the application of machine-learning models for transforming colorimetric data into threshold-based classes that represent chemical concentration.

View Article and Find Full Text PDF

NORDIC denoising on VASO data.

Front Neurosci

January 2025

Functional Magnetic Resonance Imaging (FMRI) Core, NIH, National Institute of Mental Health, Bethesda, MD, United States.

The use of submillimeter resolution functional magnetic resonance imaging (fMRI) is increasing in popularity due to the prospect of studying human brain activation non-invasively at the scale of cortical layers and columns. This method, known as laminar fMRI, is inherently signal-to-noise ratio (SNR)-limited, especially at lower field strengths, with the dominant noise source being of thermal origin. Furthermore, laminar fMRI is challenged with signal displacements due to draining vein effects in conventional gradient-echo blood oxygen level-dependent (BOLD) imaging contrasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!