β-As Monolayer: Vibrational Properties and Raman Spectra.

ACS Omega

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.

Published: June 2019

Recently, semiconducting and other extraordinary properties of the monolayer of the V-group element have attracted a broad interest and attention. The success of experimentally growing antimonene and black phosphorus makes the arsenic monolayer a reasonable candidate for two-dimensional semiconductors. By using DFT calculation, we investigate the vibrational properties and Raman spectra of the buckled honeycomb monolayer of arsenic (β-As) for four commonly used laser lines. By calculating Raman tensor of each active modes of the β-As monolayer, we obtained polarization angle-dependent Raman intensities when the wave vector of incident light is parallel and perpendicular with the plane of the β-As monolayer. We found that the nonresonant Raman spectra have two peaks at 235 and 305 cm that correspond to the in-plane vibrating mode E and out-of-plane vibrating mode A, which is similar to germanene, blue phosphorene, and β-Sb monolayer Raman spectra. There are two (four) minima and two (four) maxima when the polarization direction of scattered light is parallel (perpendicular) to that of the incident light and the wave vector of the incident light is parallel to the β-As monolayer. The Raman intensities of neither parallel polarization configuration nor perpendicular polarization configuration depend on the polarization direction when the wave vector of incident light is perpendicular to the β-As monolayer. The relation between shapes of the polar plots and relative values of Raman tensor elements is found. The Raman intensities decrease with increasing wavelength of incident laser lines in most cases. Our results will help experimentalists to identify the existence and the orientation of the β-As monolayer while they are growing the β-As monolayer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648099PMC
http://dx.doi.org/10.1021/acsomega.9b00712DOI Listing

Publication Analysis

Top Keywords

β-as monolayer
28
raman spectra
16
incident light
16
raman intensities
12
wave vector
12
vector incident
12
light parallel
12
monolayer
10
raman
9
β-as
8

Similar Publications

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.

View Article and Find Full Text PDF

The analysis of Raman and Infrared (IR) phonons in monolayered tetragonal (Sr, Ba)HfO compounds, which exhibit D symmetry and belong to the I4/mmm phase of space group 139 with Z = 2, has been conducted using normal coordinates. The SrHfO and BaHfO compounds are the first members of the Ruddlesden-Popper (RP) series denoted as (Sr, Ba)HfO with n = 1. Nine Short-Range Force Constants (SRFC) have been included in theoretical calculations to analyze the optical phonons of SrHfO and BaHfO compounds within the I4/mmm phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!