In this study, polyamide 6 (PA) is blended with ethylene vinyl alcohol (EVOH) to yield packaging materials with a balance of mechanical and gas barrier properties. However, the formation of gel-like structures in both polymers because of thermal degradation at high temperatures leads to a processing challenge, particularly during thin-gauge film extrusion. To address this challenge, nanoclays are introduced either directly or via a masterbatch of maleic-anhydride-grafted polypropylene to the PA/EVOH blend and time-resolved rheometry is used to study the effect of different modes of nanoclay incorporation on the kinetics of thermo-oxidative degradation of PA/EVOH blend and its nanocomposites. Time-resolved rheometry measurements allow the acquisition of accurate frequency-dependent linear viscoelastic behavior and offer insights into the rate of degradation or gel formation kinetics and cross-link density. The thermal degradation was studied by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and mass spectroscopy, allowing the prediction of the possible reactions that take place during the rheological property measurements. The results show that when nanoclays are incorporated directly, the oxidative reactions occur faster. In contrast, in the masterbatch method, oxidative degradation is hindered. The difference in the behaviors is shown to lie in the different nanoclay distributions in the blends; in the blends prepared by the masterbatch method, the nanoclays are dispersed at the interface. In conclusion, the masterbatch-containing blend nanocomposite would benefit processing and product development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648533PMC
http://dx.doi.org/10.1021/acsomega.9b00940DOI Listing

Publication Analysis

Top Keywords

gel formation
8
vinyl alcohol
8
blend nanocomposites
8
fourier transform
8
transform infrared
8
infrared spectroscopy
8
spectroscopy mass
8
mass spectroscopy
8
maleic-anhydride-grafted polypropylene
8
thermal degradation
8

Similar Publications

In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.

View Article and Find Full Text PDF

Methotrexate (MTX) is classified as an antimetabolite. It's commonly used to treat lung cancer. MTX is an immunosuppressant following the above-mentioned mechanism of action due to its poor selectivity.

View Article and Find Full Text PDF

We developed a facile one-pot method for fabricating physical gels consisting of ultrahigh molecular weight (UHMW) polymers and highly concentrated lithium salt electrolytes. We previously reported physical gels formed from the entanglement of UHMW polymers by radical polymerisation in aprotic ionic liquids. In this study, we found that the molecular weight of methacrylate polymers formed by radical polymerisation increased with the concentration of lithium salts in the organic solvents.

View Article and Find Full Text PDF

Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.

Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.

Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.

View Article and Find Full Text PDF

Dynamical arrest for globular proteins with patchy attractions.

Soft Matter

January 2025

Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.

Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!