Azadirachtin-A from Impacts Multiple Biological Targets in Cotton Bollworm .

ACS Omega

Plant Molecular Biology Unit, Division of Biochemical Sciences and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.

Published: May 2019

Azadirachtin-A (AzaA) from the Indian neem tree () has insecticidal properties; however, its molecular mechanism remains elusive. The "targeted and nontargeted proteomic profiling", metabolomics, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) imaging, gene expression, and in silico analysis provided clues about its action on . Fourth instar larvae fed on AzaA-based diet (AzaD) suffered from significant mortality, growth retardation, reduced larval mass, complications in molting, and prolonged development. Furthermore, death of AzaD-fed larvae was observed with various phenotypes like bursting, blackening, and half-molting. Liquid chromatography-mass spectrometry (LC-MS) data showed limited catabolic processing of ingested AzaA and dramatic alternations of primary metabolism in . MALDI-TOF imaging indicated the presence of AzaA in midgut of . In the gut, out of 79 proteins identified, 34 were upregulated, which were related to digestion, immunity, energy production, and apoptosis mechanism. On the other hand, 45 proteins were downregulated, including those from carbohydrate metabolism, lipid metabolism, and energy transfer. In the hemolymph, 21 upregulated proteins were reported to be involved in immunity, RNA processing, and mRNA-directed protein synthesis, while 7 downregulated proteins were implicated in energy transfer, hydrolysis, lipid metabolism, defense mechanisms, and amino acid storage-related functions. Subsequently, six target proteins were identified using labeled AzaA that interacted with whole insect proteins. In silico analysis suggests that AzaA could be efficiently accommodated in the hydrophobic pocket of juvenile hormone esterase and showed strong interaction with active site residues, indicating plausible targets of AzaA in . Quantitative polymerase chain reaction analysis suggested differential gene expression patterns and partly corroborated the proteomic results. Overall, data suggest that AzaA generally targets more than one protein in and hence could be a potent biopesticide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648242PMC
http://dx.doi.org/10.1021/acsomega.8b03479DOI Listing

Publication Analysis

Top Keywords

maldi-tof imaging
8
gene expression
8
silico analysis
8
proteins identified
8
lipid metabolism
8
energy transfer
8
azaa
7
proteins
6
azadirachtin-a impacts
4
impacts multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!