In the present work, we report, for the first time, a novel one-step approach to prepare highly graphitized carbon (HGC) material by selectively etching calcium from calcium carbide (CaC) using a sulfur-based thermo-chemical etching technique. Comprehensive analysis using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and N adsorption-desorption isotherms reveals a highly graphitized mesoporous structure for the CaC-derived carbon with a specific surface area of 159.5 m g. Microscopic analysis displays micron-scale mesoporous frameworks (4-20 μm) with a distinct layered structure along with agglomerates of highly graphitized nanosheets (about 10 nm in thickness and 1-10 μm lateral size). The as-prepared HGC is investigated for the role of an anode material for lithium- and sodium-ion batteries. We found that HGC exhibits good lithium storage performance in the 0.01-1.5 V range (reversible capacity of 272.4 mA h g at 50 mA g after 100 cycles and 214.2 mA h g at 500 mA g after 500 cycles), whereas, when sodium is considered, we observed a drop in the overall electrochemical performance owing to the high graphitization degree. More importantly, the present study provides a perspective approach to fabricate HGC via a simple, cost-effective, and efficient synthetic route using CaC and sulfur as reactants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648357 | PMC |
http://dx.doi.org/10.1021/acsomega.9b00448 | DOI Listing |
J Colloid Interface Sci
December 2024
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Langmuir
December 2024
Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan.
In the present study, we deposited buffer solutions containing hydrophobic (GA) fibrils onto highly oriented pyrolytic graphite (HOPG) and imaged the surfaces through atomic force microscopy (AFM). Within 3 h of applying ambient (nondegassed) buffers, we observed the formation of two-dimensional stripe-like domains on the HOPG surfaces surrounding the (GA) fibrils. However, these stripe domains did not form under degassed buffers.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).
View Article and Find Full Text PDFSci Rep
December 2024
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.
The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!