https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=31459855&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3145985520231013
2470-1343442019Apr30ACS omegaACS OmegaDehydration Pathways of Gypsum and the Rehydration Mechanism of Soluble Anhydrite γ-CaSO4.763676427636-764210.1021/acsomega.8b03476The dehydration products of gypsum under different temperature and water vapor pressure were investigated by thermodynamic theory. Additionally, the rehydration mechanism of soluble anhydrite was also studied by Monte Carlo (MC) simulations. The thermodynamic calculation results reveal that the dehydration mechanism of gypsum significantly depended on ambient temperature and water vapor pressure. In the high-temperature and low water vapor pressure region, gypsum dehydrates to form γ-CaSO4 in a single-step process (CaSO4·2H2O → γ-CaSO4); with increasing water vapor pressure, gypsum undergoes the CaSO4·2H2O → γ-CaSO4 → β-CaSO4·0.5H2O reaction path and as water vapor pressure increases further, the occurrence of a two-step conversion path CaSO4·2H2O → β-CaSO4·0.5H2O → γ-CaSO4 was observed. It was also found that gypsum is stable in the low-temperature and high water vapor pressure region and does not dehydrate to form any calcium sulfate hemihydrate. Finally, the rehydration mechanism of soluble anhydrite was studied by MC simulations. The simulation results are in agreement with the experimental data and support the finding that γ-CaSO4 rehydration forms CaSO4·0.67H2O in high relative humidity. Another important result revealed by the MC simulation is that γ-CaSO4 has an extraordinary ability to capture water molecules from an extremely dry atmosphere, which is very useful in some fields, such as in drying processes and even for extracting liquid water from extremely dry atmosphere.TangYongboYSchool of Materials Science and Engineering, Southeast University, Nanjing 211189, China.GaoJianmingJSchool of Materials Science and Engineering, Southeast University, Nanjing 211189, China.JiangSu Key Laboratory of Construction Materials, Nanjing 211189, China.LiuChuanbeiCSchool of Materials Science and Engineering, Southeast University, Nanjing 211189, China.ChenXuemeiXSchool of Materials Science and Engineering, Southeast University, Nanjing 211189, China.ZhaoYasongYSchool of Materials Science and Engineering, Southeast University, Nanjing 211189, China.engJournal Article20190426
United StatesACS Omega1016916582470-1343The authors declare no competing financial interest.
2018121220194162019829602019829602019829612019426epublish31459855PMC664925710.1021/acsomega.8b03476Robertson K.; Bish D. Constraints on the distribution of CaSO4·nH2O phases on Mars and implications for their contribution to the hydrological cycle. Icarus 2013, 223, 407–417. 10.1016/j.icarus.2012.10.028.10.1016/j.icarus.2012.10.028Rapin W.; Meslin P.-Y.; Maurice S.; Vaniman D.; Nachon M.; Mangold N.; Schröder S.; Gasnault O.; Forni O.; Wiens R. C.; Martínez G. M.; Cousin A.; Sautter V.; Lasue J.; Rampe E. B.; Archer D. Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth Planet. Sci. Lett. 2016, 452, 197–205. 10.1016/j.epsl.2016.07.045.10.1016/j.epsl.2016.07.045Fishbaugh K. E.; Poulet F.; Chevrier V.; Langevin Y.; Bibring J. P. On the origin of gypsum in the Mars north polar region. J. Geophys. Res. 2007, 112, E0700210.1029/2006je002862.10.1029/2006je002862Palacio S.; Azorín J.; Montserrat-Martí G.; Ferrio J. P. The crystallization water of gypsum rocks is a relevant water source for plants. Nat. Commun. 2014, 18, 4660.10.1038/ncomms5660.10.1038/ncomms566025130772Gendrin A.; Mangold N.; Bibring J. P.; Langevin Y.; Gondet B.; Poulet F.; Bonello G.; Quantin C.; Mustard J.; Arvidson R.; LeMouélic S. Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View. Science 2005, 307, 1587–1591. 10.1126/science.1109087.10.1126/science.110908715718429Stawski T. M.; Driessche A. E. S.; Ossorio M.; Rodriguez-Blanco J. D.; Besselink R.; Benning L. G. Fromation of calcium sulfate through the aggregation of sub-3 nanometre primary species. Nat. Commun. 2016, 7, 11177.10.1038/ncomms11177.10.1038/ncomms11177PMC482199327034256Putnis A.; Winkler B.; Fernandez-Diaz L. In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum. Mineral. Mag. 1990, 54, 123–128. 10.1180/minmag.1990.054.374.14.10.1180/minmag.1990.054.374.14Chang H.; Jane Huang P.; Hou S. C. Application of thermo-Raman spectroscopy to study dehydration of CaSO4·2H2O and CaSO4·0.5H2O. Mater. Chem. Phys. 1999, 58, 12–19. 10.1016/s0254-0584(98)00239-9.10.1016/s0254-0584(98)00239-9Ballirano P.; Melis E. Thermal behavior and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Phys. Chem. Miner. 2009, 36, 391–402. 10.1007/s00269-008-0285-8.10.1007/s00269-008-0285-819534476Weiser H. B.; Milligan W. O.; Ekholm W. C. The mechanism of the Dehydration of Calcium Sulfate Hemihydrate. J. Am. Chem. Soc. 1936, 58, 1261–1265. 10.1021/ja01298a050.10.1021/ja01298a050McAdie H. G. The effect of water vapor upon the dehydration of CaSO4·2H2O. Can. J. Chem. 1964, 42, 792–801. 10.1139/v64-118.10.1139/v64-118Badens E.; Llewellyn P.; Fulconis J. M.; Jourdan C.; Veesler S.; Boistelle R.; Rouquerol F. Study of gypsum dehydration by controlled transformation rate thermal analysis (CRTA). J. Solid State Chem. 1998, 139, 37–44. 10.1006/jssc.1998.7797.10.1006/jssc.1998.7797Ball M. C.; Norwood L. S. Study in the system calcium sulphate-water. Part I. Kinetics of dehydration of calcium sulphate dihydrate. J. Chem. Soc. A 1969, 0, 1633–1637. 10.1039/j19690001633.10.1039/j19690001633Lou W.; Guan B.; Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J. Therm. Anal. Calorim. 2011, 104, 661–669. 10.1007/s10973-010-1100-6.10.1007/s10973-010-1100-6Abriel W.; Reisdorf K.; Pannetier J. Dehydration reactions of gypsum: A neutron and X-ray diffraction study. J. Solid State Chem. 1990, 85, 23–30. 10.1016/s0022-4596(05)80055-6.10.1016/s0022-4596(05)80055-6Prasad P. S. R.; Pradhan A.; Gowd T. N. In situ micro-raman investigation of dehydration mechanism in natural gypsum. Curr. Sci. 2001, 80, 1203–1207.Carbone M.; Ballirano P.; Caminiti R. Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. Eur. J. Mineral. 2008, 20, 621–627. 10.1127/0935-1221/2008/0020-1826.10.1127/0935-1221/2008/0020-1826Metropolis N.; Rosenbluth A. W.; Rosenbluth M. N.; Teller A. H.; Teller E. Equation of state calculation by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. 10.1063/1.1699114.10.1063/1.1699114Mayo S. L.; Olafson B. D.; Goddard W. A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. 10.1021/j100389a010.10.1021/j100389a010Waldman M.; Hagler A. T. New combining rules for rare gas van der Waals parameters. J. Comput. Chem. 1993, 14, 1077–1084. 10.1002/jcc.540140909.10.1002/jcc.540140909Barin I.; Platzki G.. Thermochemical Data of Pure Substances, 3nd ed.; Wiley-VCH Verlag GmbH: Weinheim, 1995; pp 484–485.DeKock C. W.Thermodynamic Properties of Selected Metal Sulfates and Their Hydrates; United States Department of the interior: Washington, D C, 1986; pp 22–25.Robertson K.The stability and crystallography of Mars relevant hygroscopic salts: implications for environmental conditions of formation and their subsequent role in the H2O cycle. Ph.D. Dissertation, Indiana University, Indiana, U.S., 2011.Bezou C.; Nonat A.; Mutin J.-C.; Christensen A. N.; Lehmann M. S. Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder dfiiraction methods. Solid State Chem. 1995, 117, 165–176. 10.1006/jssc.1995.1260.10.1006/jssc.1995.1260Karni J.; Karni E. Y. Gypsum in construction: origin and properties. Mater. Struct. 1995, 28, 92–100. 10.1007/bf02473176.10.1007/bf02473176Valero A.; Valero A.; Vieillard P. The thermodynamic properties of the upper continental crust: Energy, Gibbs free energy and enthalpy. Energy 2012, 41, 121–127. 10.1016/j.energy.2011.06.012.10.1016/j.energy.2011.06.012Kelley K. K.; Southard J. C.; Anderson C. T.. Thermodynamic Properties of Gypsum and Its Dehydration Products; United States Bureau of Mines: Washington D. C., 1941; pp 22–29.Schmidt H.; Paschke I.; Freyer D.; Voigt W. Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O. Acta Crystallogr. 2011, 67, 467–475. 10.1107/s0108768111041759.10.1107/s010876811104175922101536Lager G. A.; Armbrster T.; Rotella F. J.; Jorgensen J. D.; Hinks D. G. A crystallographic study of the low-temperature dehydration products of gypsum, CaSO4·2H2O: hemihydrates CaSO4·0.5H2O, and γ-CaSO4. Am. Mineral. 1984, 69, 910–918.Ballirano P.; Melis E. The thermal behaviour of γ-CaSO4. Phys. Chem. Miner. 2009, 36, 319–327. 10.1007/s00269-008-0280-0.10.1007/s00269-008-0280-0Kong B.; Guan B.; Yates M. Z.; Wu Z. Control of α-Calcium sulfate hemihydrate morphology using reverse microemulsions. Langmuir 2012, 28, 14137–14142. 10.1021/la302459z.10.1021/la302459z22839648Kim H.; Yang S.; Rao S. R.; Narayanan S.; Kapustin E. A.; Furukawa H.; Umans A. S.; Yaghi O. M.; Wang E. N. Water harvesting from air with metal-Organic frameworks powered by natural sunlight. Science 2017, 356, 430–434. 10.1126/science.aam8743.10.1126/science.aam874328408720Montmessin F. Modeling the annual cycle of HDO in the martian atmosphere. J. Geophys. Res. 2005, 110, E0300610.1029/2004je002357.10.1029/2004je002357David C. C.Mars Atmosphere: History and Surface Interactions. In Encyclopedia of the Solar System, 3rd ed.; Spohn T., Breuer D., Johnson T. V., Eds.; Elsevier: Oxford, 2014; pp 343–357.Seufert S.; Hesse C.; Goetz-Neunhoeffer F.; Neubauer J. Quqntitative determination of anhydrite III from dehydrated gypsum by XRD. Cem. Concr. Res. 2009, 39, 936–941. 10.1016/j.cemconres.2009.06.018.10.1016/j.cemconres.2009.06.018Christensen A. N.; Olesen M.; Cerenius Y.; Jensen T. R. Formation and Transformation of Five Different Phases in the CaSO4-H2O System: Crystal Structure of the Subhydrate β- CaSO4·0.5H2O and Soluble Anhydrate CaSO4. Chem. Mater. 2008, 20, 2124–2132. 10.1021/cm7027542.10.1021/cm7027542