(1,10)-1'-(()-1,2-Dihydroxyethyl)-1-hydroxy-8,9-dimethoxy1,5,6,10-tetrahydropyrrolo [2,1-]isoquinolin-3(2)-one, an analogue of (-)-crispine A, with three stereogenic centers is synthesized and its absolute configuration (AC) established using the combined information derived from the synthetic scheme and single crystal X-ray diffraction data. The experimental chiroptical spectra (namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD)) and the corresponding quantum chemical (QC) predicted spectra for all diastereomers are used to evaluate the AC. The AC of the synthesized compound could be correctly established using any one of the three chiroptical spectroscopic methods (ORD, ECD, or VCD) when the relative configuration is constrained to be that derived from X-ray data or when the ACs of two of the chiral centers are constrained to be those derived from the synthetic scheme. In the absence of this outside information, the QC predicted ORD, ECD, and VCD for incorrect diastereomers are also found to satisfactorily reproduce the corresponding experimental spectra. Nevertheless, incorrect diastereomers could be eliminated when combined electronic dissymmetry factor (EDF) and vibrational dissymmetry factor (VDF) spectral analyses are included, leaving the correct diastereomer as the sole choice. Thus, the combined EDF and VDF spectral analysis is seen to be a helpful diastereomer discrimination tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648312PMC
http://dx.doi.org/10.1021/acsomega.8b03678DOI Listing

Publication Analysis

Top Keywords

dissymmetry factor
12
spectral analysis
8
diastereomer discrimination
8
analogue --crispine
8
derived synthetic
8
synthetic scheme
8
circular dichroism
8
ecd vcd
8
constrained derived
8
incorrect diastereomers
8

Similar Publications

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

Structural relaxation chirality transfer enhanced circularly polarized luminescence in heteronuclear Ce-Mn complexes.

Mater Horiz

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Circularly polarized luminescence (CPL) materials have developed rapidly in recent years due to their wide application prospects in fields like 3D displays and anti-counterfeiting. Utilizing energy transfer processes to transfer chirality has been proven as an efficient way to obtain CPL materials. However, the physics behind energy-transfer induced CPL is still not clear.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Circularly Polarized Room-Temperature Phosphorescence from Dye-Doped Cholesteric Liquid Crystalline Polymer Networks.

J Phys Chem Lett

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Circularly polarized luminescence (CPL) materials have drawn increasing attention for their potential applications in optical displays and chemo/biosensing. Nevertheless, the construction of circularly polarized room-temperature phosphorescence (CPRTP) materials is still a significant challenge. In this work, four liquid crystalline polymer network films with RTP properties have been fabricated via photopolymerization of cholesteric liquid-crystalline mixtures containing different amounts of commercially available dyes.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!