Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the selectivity of N-doped graphene nanoclusters (N-GNCs) toward the oxygen reduction reaction (ORR) using first-principles calculations within the density functional theory. The results show that the maximum electrode potentials ( ) for the four-electron (4e) pathway are higher than those for the two-electron (2e) pathway at almost all of the reaction sites. Thus, the N-GNCs exhibit high selectivity for the 4e pathway, that is, the 4e reduction proceeds preferentially over the 2e reduction. Such high selectivity results in high durability of the catalyst because HO, which corrodes the electrocatalyst, is not generated. For the doping sites near the edge of the cluster, the value of greatly depends on the reaction sites. However, for the doping sites around the center of the cluster, the reaction-site dependence is hardly observed. The GNC with a nitrogen atom around the center of the cluster exhibits higher ORR catalytic capability compared with the GNC with a nitrogen atom in the vicinity of the edge. The results also reveal that the water molecule generated by the ORR enhances the selectivity toward the 4e pathway because the reaction intermediates are significantly stabilized by water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648925 | PMC |
http://dx.doi.org/10.1021/acsomega.9b00015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!