Self-assembled molecular monolayer (SAMM) doping on semiconductors has been widely appraised for its advantages of doping nanoelectronic devices for applications in the complementary metal-oxide-semiconductor transistor (CMOS) industry. However, defects introduced by SAMM-doping will limit the performance of the devices. Previously, we have found that SAMM-doping can bring carbon impurities into the silicon substrate and these unwanted carbon impurities can deactivate phosphorus dopants by forming an interstitial carbon (C)-substitutional phosphorus (C-P) complex. Herein, to develop a defect-free SAMM-doping process, the generation and annihilation of C-related defects are investigated by extending the thermal annealing time from 2 to 10 min using secondary ion mass spectrometry and deep-level transient spectroscopy. The results show that the concentration of C-related carbon defects is lower after a longer time of thermal annealing, although a longer annealing time actually introduces a higher concentration of carbon impurities into Si. This observation indicates that interstitial carbon evolves into substitutional carbon (C) that is electrically inactive during the thermal annealing process. A defect-free SAMM-doping process may be developed by an appropriate post-annealing process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648394PMC
http://dx.doi.org/10.1021/acsomega.8b03372DOI Listing

Publication Analysis

Top Keywords

carbon impurities
12
thermal annealing
12
self-assembled molecular
8
interstitial carbon
8
defect-free samm-doping
8
samm-doping process
8
annealing time
8
carbon
7
defect-free doping
4
doping self-assembled
4

Similar Publications

Affinity for OH Produces Four-Coordinated Zn Impurities in Hydrated Amorphous Calcium Carbonate.

Inorg Chem

January 2025

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Using ab initio based molecular dynamics and electronic structure calculations, we show that Zn impurities in hydrated amorphous calcium carbonate (ACC) have a much lower coordination number than other divalent impurities due to covalent interactions between the 3d Zn shell and the oxygen atoms of the carbonate and water groups. The local structure around Zn in ACC, including the predicted low coordination number, is confirmed by X-ray absorption spectroscopy of synthetic Zn-bearing ACC. The strong Zn-O chemical interaction leads to substantial water dissociation and slightly disrupts the hydrogen bonding network.

View Article and Find Full Text PDF

The transition to net zero emissions requires the capture of carbon dioxide from industrial point sources, and direct air capture (DAC) from the atmosphere for geological storage. Dissolved CO has reactivity to rock core, and while the majority of previous studies have concentrated on reservoir rock or cap-rock reactivity, the underlying seal formation may also react with CO. Drill core from the underlying seal of a target CO storage site was reacted at in situ conditions with pure CO, and compared with an impure CO stream with SO, NO and O that could be expected from hard to abate industries.

View Article and Find Full Text PDF

Thermal Desorption Hyphenated to Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry for Trace Analysis in Raw Renewable Gases-Application to Hydrothermal Gasification.

J Sep Sci

January 2025

Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), UMR CNRS-ESPCI Paris, ESPCI Paris, PSL University, CNRS, Paris, France.

In the context of the energy transition, European countries pursue the common goal of increasing the share of renewable gases (from anaerobic digestion, pyrogasification, and hydrothermal gasification for instance) in the gas mix. Although produced gases are mainly composed of methane after upgrading, impurities of various natures and quantities may also be present in the produced raw gases and still after upgrading, including volatile organic compounds (VOCs) at trace levels that may have an impact on different stages of the gas chain even at low concentrations. These new renewable and/or low-carbon gases imply the need to develop new analytical tools to deeply characterize them, and thus fully manage their integration into the gas value chain.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.

View Article and Find Full Text PDF

This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!