Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bioinspired superhydrophobic substrates have been used in many scientific and technological areas. These substrates can trap atmosphere-linked air pockets at the solid-liquid interface, offering an opportunity to address the oxygen-deficit problem in many reaction systems. Herein, we addressed the oxygen-deficit problem in metal oxide electrochemical deposition by using a triphase electrode possessing an air-liquid-solid joint interface. Oxygen in the interface is directly available from the air phase for sufficient OH production via oxygen cathodic reaction, thereby offering us a green approach to fabricate two-dimensional mesoporous ZnO nanoarrays over a wide range of current densities. Further, because metal oxides are deposited at the triphase interface, sufficient O, a natural electron scavenger required in photocatalytic reaction to suppress the recombination of photogenerated electron-hole pairs, can be directly supplied, and we demonstrated their enhanced photocatalytic reaction kinetics in water remediation. The present work highlights a powerful interface-engineering strategy for fabricating metal oxides with unprecedented photocatalytic ability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648803 | PMC |
http://dx.doi.org/10.1021/acsomega.8b03234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!