Manipulation of Grafting Location via Photografting To Fabricate High-Performance Ethylene Vinyl Alcohol Copolymer Membrane for Protein Separation.

ACS Omega

State Key Laboratory of Separation Membranes and Membrane Processes and School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.

Published: February 2019

Ethylene vinyl alcohol copolymer (EVAL) membrane has great potential for applications in protein separation and purification, but the uncontrollable distribution of grafting location when membranes are modified by the grafting method limits the membrane performance. Herein, an effective strategy for controlling the distribution of grafting location was designed to fabricate a high-performance EVAL membrane via photografting. The UV intensity through the membranes was weakened when the local concentration of the photoinitiator benzophenone (BP) on the topside of the membrane increased; thus, the grafting location inside the EVAL membrane changed from homogenous to asymmetric distribution based on the UV absorbability of BP. The grafting inside the membrane pores can be promoted when the loose and porous surface of the EVAL membrane was used as the UV-facing side. More importantly, the varied distribution of grafting location played different roles on improving the membrane performance. For protein binding, the limited convection in the membrane bed was avoided, and the desorption efficiency could be improved when the grafting location enriched inside the membrane pores. For protein filtration, the antifouling properties of the EVAL membrane were enhanced when the grafting location enriched on the topside. This research offers a novel approach to achieve controllable grafting location distribution of membranes and provides a perspective to design the high-performance EVAL membranes for protein separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648286PMC
http://dx.doi.org/10.1021/acsomega.8b03363DOI Listing

Publication Analysis

Top Keywords

grafting location
32
eval membrane
20
membrane
12
protein separation
12
distribution grafting
12
grafting
9
location
8
fabricate high-performance
8
ethylene vinyl
8
vinyl alcohol
8

Similar Publications

Background And Aims: Sarcoidosis is a multisystem disorder characterized by nonnecrotizing granulomas. Studies suggest 20%-70% of patients with sarcoidosis have abnormal liver chemistries or abdominal imaging. Hepatic sarcoidosis may be complicated by portal hypertension (portal HTN) with or without cirrhosis.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) associated with major vasculature tumor extension is considered an advanced stage of disease to which palliative radiotherapy or chemotherapy is proposed. Surgical resection associated with chemotherapy or chemoembolization could be an opportunity to improve overall survival and recurrence-free survival in selected cases in a high-volume hepatobiliary center. Moreover, it has been 25 years since Couinaud described the entity of a posterior liver located behind an axial plane crossing the portal bifurcation.

View Article and Find Full Text PDF

Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.

View Article and Find Full Text PDF

Basal cell carcinoma (BCC), the most common skin malignancy, typically occurs in sun-exposed areas but can develop in atypical locations, such as scars, burns, and skin graft donor sites. BCC arising specifically in full-thickness skin graft donor sites is exceptionally rare. This study presents a unique case of BCC occurring 16 years post-graft harvesting and provides a comprehensive literature review to analyze clinical patterns, possible etiopathogenesis, and treatment strategies.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (10-10) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!