AI Article Synopsis

  • Various electrolytes, particularly those containing fluoroethylene carbonate (FEC), have been shown to improve the reversibility of lithium (Li) metal electrodes in batteries.
  • While high FEC contents enhance the stability of Li electrodes, excessive amounts (50 wt % and above) can lead to reduced discharge capacity due to the buildup of a passivation layer on lithium cobalt oxide (LCO) cathodes.
  • By carefully adjusting the interface properties of Li metal and LCO using the appropriate FEC concentrations, a Li/LCO battery can achieve stable cycling for over 350 cycles, highlighting the importance of FEC in forming a beneficial solid electrolyte interface (SEI) layer.

Article Abstract

Various electrolytes have been reported to enhance the reversibility of Li-metal electrodes. However, for these electrolytes, concurrent and balanced control of Li-metal and positive electrode interfaces is a critical step toward fabrication of high-performance Li-metal batteries. Here, we report the tuning of Li-metal and lithium cobalt oxide (LCO) interfaces with fluoroethylene carbonate (FEC)-containing electrolytes to achieve high cycling stability of Li/LCO batteries. Reversibility of the Li-metal electrode is considerably enhanced for electrolytes with high FEC contents, confirming the positive effect of FEC on the stabilization of the Li-metal electrode. However, for FEC contents of 50 wt % and above, the discharge capacity is significantly reduced because of the formation of a passivation layer on the LCO cathodes. Using balanced tuning of the two interfaces, stable cycling over 350 cycles at 1.5 mA cm is achieved for a Li/LCO cell with the 1 M LiPF FEC/DEC = 30/70 electrolyte. The enhanced reversibility of the Li-metal electrode is associated with the formation of LiF and polycarbonate in the FEC-derived solid electrolyte interface (SEI) layer. In addition, electrolytes with high FEC contents lead to lateral Li deposition on the sides of Li deposits and larger dimensions of rodlike Li deposits, suggesting the elastic and ion-conductive nature of the FEC-derived SEI layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648377PMC
http://dx.doi.org/10.1021/acsomega.8b03022DOI Listing

Publication Analysis

Top Keywords

reversibility li-metal
12
li-metal electrode
12
fec contents
12
tuning interfaces
8
interfaces fluoroethylene
8
fluoroethylene carbonate
8
li/lco batteries
8
electrolytes high
8
high fec
8
sei layer
8

Similar Publications

Ultra-robust Single-Ion Conducting Composite Electrolytes for Stable Li-Metal Batteries.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Organic-Inorganic Composites, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

With significantly high lithium-ion (Li) transport efficiency, single-ion conducting polymer electrolytes (SIPEs) often suffer from low ionic conductivity due to the covalently bonded anions to the polymer backbone. Adding plasticizers to SIPEs to improve ionic conductivity usually reduces the polymer matrix's mechanical robustness, negatively affecting overall performance as solid electrolytes. Herein, to surpass such a trade-off relationship, we successfully designed a single-ion conducting composite membrane (c-SIPM60) with cross-linked linear SIPEs and incorporated glass-mesh substrate, which shows a cation transport number close to 1, ultrahigh tensile strength of 22 MPa (modulus of 547.

View Article and Find Full Text PDF

Designing Current Collectors to Stabilize Li Metal Anodes.

Adv Mater

January 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China.

Rechargeable batteries employing Li metal anodes have gained increasing attention due to their high energy density. Nevertheless, low stability and reversibility of Li metal anodes severely impeded their practical applications. Designing current collectors (CCs) with reasonable structure and composition is an efficient approach to stabilizing the Li metal anodes.

View Article and Find Full Text PDF

Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.

View Article and Find Full Text PDF

Lithium (Li) metal anodes (LMAs), which show a great potential in constructing high-specific-energy-density Li metal batteries (LMBs), have abstracted wide research interest. However, the generation of Li dendrites and the repeated change of volume upon Li plating/stripping severely block the practical commercialization of LMBs. Herein, the functional carbon fibers (CFs) decorated with ZnO embedded carbon cage (ZnO@C-d-CFs) were fabricated successfully by a two-step route including the in-situ growth of Zn-based metal organic frameworks (MOFs) and subsequent carbonization process, which enriched the lithiophilic sites of CFs host and improved Li+ kinetics of Li+ plating/stripping.

View Article and Find Full Text PDF

Metal batteries have captured significant attention for high-energy applications, owing to their superior theoretical energy densities. However, their practical viability is impeded by severe dendrite formation and poor cycling stability. To alleviate these issues, a 3D-structured bimetallic-MoTiCT based fiber electrode was fabricated in this study and analyzed experimentally and computationally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!