Various electrolytes have been reported to enhance the reversibility of Li-metal electrodes. However, for these electrolytes, concurrent and balanced control of Li-metal and positive electrode interfaces is a critical step toward fabrication of high-performance Li-metal batteries. Here, we report the tuning of Li-metal and lithium cobalt oxide (LCO) interfaces with fluoroethylene carbonate (FEC)-containing electrolytes to achieve high cycling stability of Li/LCO batteries. Reversibility of the Li-metal electrode is considerably enhanced for electrolytes with high FEC contents, confirming the positive effect of FEC on the stabilization of the Li-metal electrode. However, for FEC contents of 50 wt % and above, the discharge capacity is significantly reduced because of the formation of a passivation layer on the LCO cathodes. Using balanced tuning of the two interfaces, stable cycling over 350 cycles at 1.5 mA cm is achieved for a Li/LCO cell with the 1 M LiPF FEC/DEC = 30/70 electrolyte. The enhanced reversibility of the Li-metal electrode is associated with the formation of LiF and polycarbonate in the FEC-derived solid electrolyte interface (SEI) layer. In addition, electrolytes with high FEC contents lead to lateral Li deposition on the sides of Li deposits and larger dimensions of rodlike Li deposits, suggesting the elastic and ion-conductive nature of the FEC-derived SEI layer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648377 | PMC |
http://dx.doi.org/10.1021/acsomega.8b03022 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Organic-Inorganic Composites, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
With significantly high lithium-ion (Li) transport efficiency, single-ion conducting polymer electrolytes (SIPEs) often suffer from low ionic conductivity due to the covalently bonded anions to the polymer backbone. Adding plasticizers to SIPEs to improve ionic conductivity usually reduces the polymer matrix's mechanical robustness, negatively affecting overall performance as solid electrolytes. Herein, to surpass such a trade-off relationship, we successfully designed a single-ion conducting composite membrane (c-SIPM60) with cross-linked linear SIPEs and incorporated glass-mesh substrate, which shows a cation transport number close to 1, ultrahigh tensile strength of 22 MPa (modulus of 547.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China.
Rechargeable batteries employing Li metal anodes have gained increasing attention due to their high energy density. Nevertheless, low stability and reversibility of Li metal anodes severely impeded their practical applications. Designing current collectors (CCs) with reasonable structure and composition is an efficient approach to stabilizing the Li metal anodes.
View Article and Find Full Text PDFNanoscale
January 2025
J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci., Dolejškova 3, CZ-18200, Prague 8, Czech Republic.
Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFChemSusChem
January 2025
Guangxi University, School of Resource, Environments and Materials, CHINA.
Lithium (Li) metal anodes (LMAs), which show a great potential in constructing high-specific-energy-density Li metal batteries (LMBs), have abstracted wide research interest. However, the generation of Li dendrites and the repeated change of volume upon Li plating/stripping severely block the practical commercialization of LMBs. Herein, the functional carbon fibers (CFs) decorated with ZnO embedded carbon cage (ZnO@C-d-CFs) were fabricated successfully by a two-step route including the in-situ growth of Zn-based metal organic frameworks (MOFs) and subsequent carbonization process, which enriched the lithiophilic sites of CFs host and improved Li+ kinetics of Li+ plating/stripping.
View Article and Find Full Text PDFACS Nano
January 2025
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
Metal batteries have captured significant attention for high-energy applications, owing to their superior theoretical energy densities. However, their practical viability is impeded by severe dendrite formation and poor cycling stability. To alleviate these issues, a 3D-structured bimetallic-MoTiCT based fiber electrode was fabricated in this study and analyzed experimentally and computationally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!