AI Article Synopsis

  • Researchers have created multifunctional membranes from common soil components like clay and humic acids, enhancing their strength and durability through cross-linking.
  • These membranes feature tiny channels that enable unique fluid behaviors at the nanoscale, while also allowing for increased electrical conductivity when heated.
  • The heated soil membranes show high sensitivity to ammonia gas, offering a new way to develop and investigate mixed conducting materials.

Article Abstract

Multifunctional freestanding membranes are prepared by tuning the structure of ubiquitous soil components, viz. clay and humic acids. Cross-linking of exfoliated clay layers with purified humic acids not only conferred mechanical strength but also enhanced chemical robustness of the membranes. The percolated network of molecularly sized channels of the soil membranes exhibits characteristic nanofluidic phenomena. Electrical conductivity is induced to otherwise insulating soil membranes by heating in an inert atmosphere, without affecting their nanofluidic ionic conductivity. The soil membranes also provided a new platform to prepare and study mixed conducting materials. Strips of heated membranes are shown to exhibit excellent sensitivity toward NH gas under atmospheric conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648056PMC
http://dx.doi.org/10.1021/acsomega.8b03144DOI Listing

Publication Analysis

Top Keywords

soil membranes
12
soil components
8
multifunctional freestanding
8
freestanding membranes
8
humic acids
8
membranes
7
reconstruction soil
4
components multifunctional
4
membranes multifunctional
4
membranes prepared
4

Similar Publications

The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi mitigate cadmium stress in maize.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).

View Article and Find Full Text PDF

Transgenic Cynodon dactylon overexpressing CdPIF4 alters plant development and cold stress tolerance.

Physiol Plant

January 2025

Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China.

Bermudagrass [Cynodon dactylon (L.) Pers.] is widely used for soil remediation, livestock forage, and as turfgrass for sports fields, parks, and gardens due to its resilience and adaptability.

View Article and Find Full Text PDF

Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis.

View Article and Find Full Text PDF

Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance.

Plant Cell Rep

December 2024

State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.

We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!