Probing the intermolecular interactions and local environments of self-assembled peptide nanostructures (SPNs) is crucial for a better understanding of the underlying molecular details of self-assembling phenomena. In particular, investigation of the hydration state is important to understand the nanoscale structural and functional characteristics of SPNs. In this report, we examined the local hydration environments of SPNs in detail to understand the driving force of the discrete geometric structural self-assembling phenomena for peptide nanostructures. Advanced electron paramagnetic resonance spectroscopy was used to probe the hydrogen bond formation and geometry as well as the hydrophobicity of the local environments at various spin-labeled sites in SPNs. The experimental results supplement the sparse experimental data regarding local structures of SPNs, such as the hydrogen bonding and the hydrophobicity of the local environment, providing important information on the formation of SPNs, which have immense potential for bioactive materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648812 | PMC |
http://dx.doi.org/10.1021/acsomega.8b02450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!